
Open-Set Classification
with Ensembles of
Binary Classifiers

Master Thesis

Silvan Kübler
19-752-906

Submitted on
August 7 2024

Thesis Supervisor
Prof. Dr. Manuel Günther

Ar
tifi

ci
al Intelligence M

A
C

H
IN

E

Learning

Department of
Informatics

1

Declaration of Independence for Written Work

I hereby declare that I have composed this work independently and with-
out the use of any aids other than those declared (including generative AI
such as ChatGPT) – the use of generative AI to improve my composed
work was permitted by the thesis supervisor. I am aware that I take
full responsibility for the scientific character of the submitted text my-
self, even if AI aids were used. All passages taken verbatim or in sense
from published or unpublished writings are identified as such. The work
has not yet been submitted in the same or similar form or in excerpts as
part of another examination.

Place, Date Silvan Kübler

Master Thesis

Author: Silvan Kübler, silvan.kuebler@uzh.ch

Project period: 07.02.2024 - 07.08.2024

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Zurich, 07.08.2024

Acknowledgements

I want to thank Prof. Dr. Manuel Günther for supervising this thesis. His constructive feedback,
guidance, and expertise have been precious throughout all our discussions. Furthermore, I want
to thank the AIML group for providing me with the computational infrastructure that was needed
to conduct the experiments. Finally, I would like to thank my family and friends for their uncon-
ditional support.

Abstract

For many years, deep neural networks have achieved astonishing performance in image classifi-
cation. These networks work very well when the classes during training and testing are the same.
However, during deployment in the real world, often samples of previously unseen classes occur
and should then be rejected. In contrast, a sample of a class seen before should still be classified
correctly. This is what open-set classification is about, which artificially simulates such a real-
world scenario. Traditional approaches to open-set classification are normally based on a single
network that outputs probabilities over all classes. In this thesis, we take a different path and use
ensembles of binary classifiers to tackle the open-set task. The multiclass classification problem is
split into many binary classification problems, which are then learned separately and aggregated
in the end to get a classification result. We cover the whole process, from the creation of a binary
problem to training binary classifiers and evaluating them appropriately. The experiments are
conducted on subsets of the ImageNet dataset, which try to resemble different levels of difficulty
in their open-set task. We show that when using our binary ensemble approach, performance on
the open-set task is on par with Softmax-based methods. When no negative samples for training
are available, the binary ensemble does even perform better than a comparable Softmax-based
approach. Achieving good performance is possible with a low number of binary classifiers.

List of Symbols

α Weighting factor of focal loss

δ Hamming distance

γ Focusing parameter of focal loss

ϕ Softmax function

ρ Class similarity used with sigmoid probabilities

ρ∗ Class similarity used with logits

σ Sigmoid function

τn Label of sample n

E Ensemble of binary classifier matrix

Y Ensemble prediction matrix

θ Probability threshold in OSCR

B Total number of binary classifiers in E

Bmax Maximum possible number of binary classifiers for C

Bmin Minimum possible number of binary classifiers for C

C Total number of classes

K Total Number of known classes

k Dimensionality of the separate fully connected layer of the combined+ approach

N Number of samples in current batch

NK Total number of known test samples

NU Total number of negative/unknown test samples

om,n Output of convolution at position m,n

tn Target label of the nth sample for the positive class

tn,c Target label of the nth sample for class c

vi List of Symbols

wi,j Convolution kernel weight at position i, j

x Input sample

yn Probability of the nth sample for the positive class

yn,c Probability of the nth sample for class c

z Logits (model outputs before activation)

Contents

1 Introduction 1

2 Related Work 5
2.1 Open-Set Classification . 5
2.2 Binary Classifiers . 7
2.3 Ensemble Learning . 7
2.4 Convolutional Neural Networks . 8

3 Background 11
3.1 Activation and Loss Functions for Classification . 11

3.1.1 Softmax Activation and Cross-Entropy Loss 11
3.1.2 Sigmoid Activation and Binary Cross-Entropy Loss 12
3.1.3 Focal Loss . 12

3.2 Training with Negatives . 13
3.3 Open-Set Classification Rate (OSCR) . 13

4 Data 15
4.1 MNIST & EMNIST . 15
4.2 ImageNet Open-Set Classification Protocols . 16

5 Approach 19
5.1 Creating a Binary Classification Problem . 19

5.1.1 Random Partitioning of Classes . 19
5.1.2 Partitioning with maximizing Hamming Distance among Classes 21

5.2 Separate and Combined Binary Classifiers . 22
5.3 Obtaining a Classification Score from the Ensemble Model Output 24

5.3.1 Training a Binary Ensemble with Negative Samples 25

6 Experiments and Results 29
6.1 Neural Networks . 29
6.2 Preliminary Experiments on EMNIST . 29

6.2.1 Optimal number of Classifiers and maximizing Distance between Classes . 30
6.2.2 Separate vs. Combined Binary Classifiers . 31
6.2.3 Evaluation Approaches . 32
6.2.4 Training with Negatives . 33

6.3 Experiments on ImageNet . 34
6.3.1 Optimal Number of Classifiers . 34
6.3.2 Combined+ vs. Combined Approach . 35

viii Contents

6.3.3 Binary Ensemble on all three Protocols . 36

7 Discussion 39
7.1 Creation of a Binary Classification Problem . 39
7.2 Analysis of High-Confidence Misclassifications and Rare Errors 40
7.3 Analysis of Score Distributions . 45
7.4 Limitations . 46

8 Conclusion 49
8.1 Summary . 49
8.2 Future Work . 50

A Attachments 51

Chapter 1

Introduction

Image classification is ubiquitous in our modern world, be it scanning X-rays for tumors (Koh
et al., 2022; Kaur and Garg, 2023), telling apart crops from weeds in agriculture for modern weed
destruction (Rasti et al., 2019; Wang et al., 2019), or in video surveillance for real-time detection
of suspicious behavior (Verma et al., 2022). This is made possible by the massive increase in
performance of modern graphics processing units (GPUs), and the large availability of stored
data linked with the invention of deep learning systems that can process these vast amounts
of data. These advancements coupled with declining prices for hardware have accelerated AI
development significantly.

The invention of convolutional neural networks (CNNs) which can learn feature maps inde-
pendent of their position in the image brought huge improvements to image classification tasks
(LeCun et al., 1995). CNNs learn feature maps, which are then followed by fully connected layers
outputting a probability distribution over all possible classes. The maximum probability over all
classes is the predicted class of the network. This class is then compared to the ground truth label
during training. The resulting discrepancy between the probability distribution of the model’s
prediction and the ground truth label is quantified using a loss function, such as Categorical
Cross-Entropy (CCE) loss. Depending on this loss the model’s parameters are updated using
backpropagation to achieve a smaller loss on the next run of training images that pass through
the network. Up to this day, CNNs have proven to be very successful by achieving high accuracy
in image classification tasks on many datasets ranging from small ones like MNIST1, CIFAR-102,
or CIFAR-1002 to large ones such as ImageNet1K3. The current state-of-the-art approaches often
use a transformer architecture to achieve even higher accuracies (Yuan et al., 2021).

These achievements in accuracy are remarkable, but the models are normally tested only on
classes already seen during the model’s training, which is not representative of a deployment sce-
nario where there could also be a sample of a class not seen during training. Dhamija et al. (2018)
show that when a letter is presented to a network trained on the digits of the MNIST dataset, the
network predicts one of the learned digits. This can be very bad in reality, and depending on the
use case, the system should be able to handle unseen samples correctly. In the field of Open-Set
Classification (OSC), the model can classify samples from classes that have not been seen before
as unknown and thus reject them (Palechor et al., 2023). Multiple approaches have evolved over
the last decade to tackle OSC. They can be separated into post-processing and network-based ap-
proaches. The former are methods applied upon the deep features of trained networks, such as
Maximum Softmax Scores, which thresholds the probability output from Softmax, and everything
below that threshold is classified as unknown (Hendrycks and Gimpel, 2017). Another approach
is OpenMax which introduces an alternative to the Softmax function that can model the probabil-

1https://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/~kriz/cifar.html
3https://www.image-net.org

https://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org

2 Chapter 1. Introduction

ity for unknown (Bendale and Boult, 2016). A newer post-processing approach is PROSER, which
fine-tunes an existing network to the open-set task by learning data and classifier placeholders
for the unknown samples (Zhou et al., 2021).

On the other hand, network-based approaches modify the network in a way that it has the
option to classify a sample as unknown (Bisgin et al., 2024). One of the oldest methods is the
introduction of an additional garbage class as output of the network, which is then used as the
target class for all unknown samples. This approach has been used many times by researchers
(Zhou et al., 2021; Chen et al., 2021). Another approach is the Entropic Open-Set (EOS) loss,
which avoids producing high probabilities for unknown samples whilst not explicitly outputting
a probability for the unknown (Dhamija et al., 2018). All those methods have in common that
they normally make use of a model that outputs some sort of Softmax probabilities. Moreover,
they need to define training samples for the unknown class, which can be difficult to obtain.
Alternative approaches are available but have not yet been explored in the domain of OSC.

In the domain of open-set face recognition, the model learns an incomplete set of faces and
should thereafter also be able to handle unknown faces by dismissing them as unknown and
hereby focus only on the relevant faces (Vareto et al., 2023). Vareto and Schwartz (2020) and
Vareto et al. (2023) take a different approach to the open-set face recognition problem using an
ensemble of binary classifiers in which each classifier makes a binary prediction for a subset, and
the combination of these predictions yields the final scores for each face in the gallery. The face
in the gallery with the highest score is the model’s prediction if it is above a certain threshold,
otherwise, the sample is classified as unknown. The binary models can be trained separately as
unique networks, or one can also train one model that consists of multiple binary classifiers. Rudd
et al. (2016) show in the domain of facial attribute recognition that their mixed objective optimiza-
tion network (MOON) even outperforms separate binary classifiers, while being a single network
trained with multiple binary classifiers. These are promising results for open-set classification
which should be explored.

The main motivation behind this thesis is applying the ensemble of binary classifier approach
to open-set image classification problems, with the hope that it performs better than the classic
Softmax-based approaches. However, using such a binary ensemble for open-set classification
is not straightforward and does bring quite some challenges with it such as the decomposition
of a multiclass problem into a binary one, the evaluation of the binary predictions, and rejecting
before unseen samples. Four research questions guide this objective.

RQ 1: How can binary classifiers be used for open-set classification?

This research question investigates the applicability of established binary classification techniques
to the domain of open-set image classification. In detail, two sub-questions are tackled, which
further refine RQ 1:

RQ 1.1: Does maximizing the Hamming distance between classes improve the classification
performance of the binary ensemble classifier compared to a random approach?

RQ 1.2: Do more binary classifiers lead to an improved classification performance?

RQ 1.1 addresses the decomposition of a multiclass problem into a binary one. In our experi-
ments, we work with datasets that consist of many more than only two classes, and as such we
need methods to obtain a binary classification problem while still being able to do multiclass
classification in the end. For this, we use an ensemble of binary classifiers where each classifier
learns a unique binary classification problem in which every class of the original dataset is ei-
ther assigned to partition 0 or 1. To form those partitions we use a completely random approach
and another one that maximizes the Hamming distance between the original classes, each de-
fined through a binary vector which results from all the binary classifiers in the ensemble. RQ 1.2

3

explores if more binary classifiers give better results than fewer ones. Furthermore, the second
research question explores how this impacts open-set performance.

RQ 2: How does using binary classifiers impact open-set performance?

Two sub-questions are explored, considering if one or multiple binary classifier models should
be used, and which evaluation approach to obtain a score from the model is the best regarding
performance. In the combined approach we do have a single neural network that contains multi-
ple binary classifiers that rely on the same deep features, whereas in the separate approach, one
complete network is used per binary classifier. In RQ 4.2 we introduce the combined+ approach,
which extends the combined approach through an individual fully connected outer layer per bi-
nary classifier. This allows the model to build upon shared deep features while still given the
possibility to adapt highly to its unique binary classification task.

RQ 2.1: Does a combined or a separate binary classifier perform better?

RQ 2.2: Does the evaluation approach using probabilities outperform the simpler threshold
and the unbounded logits approach?

RQ 3 investigates the impact of incorporating negative samples within the training process on the
performance of an ensemble of binary classifiers.

RQ 3: How much do negative samples during training improve the binary ensemble?

This research question is divided into the following sub-questions:

RQ 3.1: Which approach results in better performance when training with negatives: training
negatives as an extra class or with an equal approach that integrates them in both sets of the
binary classifiers to learn a balanced output of 0.5?

The RQ 3.1 does examine if negatives should just be integrated like another class or if the network
should be trained to output the prediction in a way that the value lies exactly between the two
sets that should be learned. To address the problem of easy-vs-hard to classify samples, RQ 3.2
explores if using Focal Loss does bring improved performance compared over using Binary Cross
Entropy loss.

RQ 3.2: Does using Focal Loss improve performance of the binary ensemble compared to just
using BCE?

Research questions 1-3 are mostly examined in open-set experiments on the EMNIST dataset. The
discoveries are then transferred to the ImageNet dataset to test if the findings also hold in such a
large-scale case. This is investigated with research question 4.

RQ 4: How much is performance increased by using binary classifiers on open-set ImageNet
protocols compared to Softmax-based approaches?

RQ 4.1: How does the optimal number of binary classifiers change concerning the Correct
Classification Rate at a False Positive Rate (CCR@FPR) on Protocol 2?

RQ 4.2 Is the combined+ binary classifier approach superior to the combined one in terms of
performance on Protocol 2?

RQ 4.3: Does using an ensemble of binary classifiers increase performance on Protocols 1, 2,
and 3 compared to Softmax-based approaches?

Chapter 2

Related Work

This chapter highlights the related work of open-set classification, binary classifiers, ensemble
training, and gives an overview over Convolutional Neural Networks (CNNs).

2.1 Open-Set Classification
Image classification has a long history in machine learning. LeCun et al. (1995) presented con-
volutional neural networks (CNNs) as a novel approach to classify images. With CNNs, the ac-
curacy for many image classification tasks such as classifying handwritten digits on the MNIST1

dataset has been over 99% for more than 20 years. Even on larger datasets such as ImageNet,
the classification accuracy over 1000 different classes is above 85% (Liu et al., 2021). These high
accuracy scores are indeed an achievement in AI research. However, they only tell half of the
story, as they only work with a clear number of finite classes. That does not reflect the real world
and can be seen in the WordNet database, which currently contains over 100’000 classes (Miller,
1998). Moreover, most research is done on closed-set classification, where all classes are known
and trained when creating the network (Scheirer et al., 2012). These networks operate under a
closed-world assumption, presenting an oversimplified model of our world. In contrast, Scheirer
et al. (2012) show the open-set classification scenario in which there are classes during testing that
have not been seen previously by the network, resembling a scenario that could also occur in the
real world.

If a closed-set network is tested in an open-set scenario it will have no capabilities to say: “I do
not know” and will rather assign the sample to one of the trained classes, with a most likely high
confidence, which leads to a poor performance of the network (Wilber et al., 2013). These unseen
classes, which might occur during testing or deployment in the real world, are often referred to as
unknowns (Palechor et al., 2023). In the case of such an unknown class, a network, being capable of
handling this open-set task, should assign a low confidence score over all known classes, therefore
allowing for the rejection of unknowns through thresholding.

A long-standing approach is the assignment of an unknown sample to an additional garbage
class, often used as a catch-all category for unrecognizable or out-of-distribution data points
(Matan et al., 1990). Adding a garbage class is a network-based approach, which requires ad-
justment of the underlying network (Bisgin et al., 2024). Although the garbage class approach
is widely represented in the literature (Zhang et al., 2018; Liu et al., 2016a; Ren et al., 2015; Pale-
chor et al., 2023), it seems to be inferior to other approaches of incorporating negatives during
training. Due to its separate garbage class, it produces deep features with high magnitudes for
negative and unknown samples and forces the garbage class to lay in its own region in the latent

1https://yann.lecun.com/exdb/mnist/

https://yann.lecun.com/exdb/mnist/

6 Chapter 2. Related Work

space (Dhamija et al., 2018). It has been shown that a better way to threshold confidence scores
of negatives is to keep their deep feature magnitudes low. Dhamija et al. (2018) state that the
garbage class approach is simple yet effective on many small datasets used in academia such as
PASCAL and MS-COCO. However, on more “truly” open-set datasets such as the protocols 1-3
on ImageNet by Palechor et al. (2023) the garbage class approach shows its limitations in rejecting
unknown samples.

Post-processing approaches also exist that use a closed-set network and add capabilities for
open-set classification. One such approach is thresholding the Maximum Softmax Score (MSS)
to deal with unknowns (Hendrycks and Gimpel, 2017). In MSS, if the highest probability from
the Softmax function falls below a threshold, the output prediction is the unknown class. MSS
assumes that for an unknown sample, the Softmax scores are distributed evenly with no class
having a very high score and therefore all scores are below a certain threshold (Dhamija et al.,
2018). However, the Softmax function is prone to producing high probability scores due to its
use of the exponential function, which grows rapidly, and therefore it is uncommon to see a
uniform distribution of the scores for an unknown sample (Hendrycks and Gimpel, 2017). In
neural networks, logits are the raw output values before applying an activation function such as
Softmax. They represent the unnormalized predictions of the model. Another related issue is that
the Softmax function squashes the logit inputs to values between 0 and 1, which can result in
information loss and prevents intra-class separability (Liu et al., 2016b; Hinton et al., 2015). This
is why Hendrycks et al. (2022) introduced the MaxLogit approach, which uses the logits directly
instead of putting them through Softmax first.

On top of that, many more approaches exist, which are not further discussed in this chap-
ter. The network-based approaches do require training with negative data or also named known
unknown data, which is not part of any known class (Bisgin et al., 2024). For sourcing negative
data various approaches do exist: such as using genuine negative samples sourced from various
datasets (Dhamija et al., 2018; Palechor et al., 2023), creating negative samples through the alter-
ation of existing ones (Zhou et al., 2021), or the artificial generation of negative samples (Ge et al.,
2017).

The open-set scenario is challenging for current networks, and there is still a lot of room for
improvement (Bisgin et al., 2024). Palechor et al. (2023) show that even the evaluation of open-
set classification networks poses quite a challenge and is often done wrong among researchers.
Mainly, unsuitable metrics are used for measuring the performance of the networks, which do
not take into account the specialities of open-set classification.

In many classification tasks, very high accuracy is often hardly possible due to hard-to-classify
samples that result from class overlap or bad samples (Metzner et al., 2022). This is where open-
set methods could benefit closed-set tasks by helping to identify when a sample is too ambiguous
for a confident classification to one of the known classes (Panareda Busto and Gall, 2017).

Out-of-distribution detection is closely related to open-set classification. While both share
some similarities they are still treated mostly as different areas of research. Open-set classification
is normally a multi-class classification problem where unknowns can occur and should be rejected
(Palechor et al., 2023). Out-of-distribution detection is usually a binary classification problem
where each sample is classified as in- or out-of-distribution. The in-distribution samples are not
further assigned a specific class (Hendrycks and Gimpel, 2017). Detecting whether the data is
shifted a lot from the data distribution used during training is often a safety measure that ensures
reliable predictions and prevents a model from operating outside its area of expertise (Ren et al.,
2019).

Even with the differences between open-set classification and out-of-distribution detection,
both have the common goal of making networks more robust and trustworthy with real-world
data. Advances in one of these two areas can often be transferred to the other, thus advancing
both (Vaze et al., 2022; Cao et al., 2021; Scheirer et al., 2014).

2.2 Binary Classifiers 7

2.2 Binary Classifiers
Classification tasks find broad application in real-world scenarios, with a significant portion en-
compassing more than two classes, commonly referred to as multi-class problems (Galar et al.,
2011). Such problems are present in many fields, naming only a few: sign-language detection
(Aran and Akarun, 2010), cancer histology classification (Araújo et al., 2017), and quality control.
Although multi-class problems are omnipresent, many times it is simpler to build a classifier that
only has to distinguish between two classes, because the decision boundaries are often easier to
learn (Lan et al., 2022). This binary classification can be applied when only two classes should be
distinguished, such as dogs vs. cats. In most cases, however, there are more than two classes
present. Therefore, decomposition strategies for creating a binary classification problem exist.

One such strategy is one-vs-one which divides the classification problem into as many binary
problems as there are possible combinations between pairs of classes (Knerr et al., 1990). To get the
classified output, all binary classifications are considered together and the class which is classified
the most is the model’s output (Galar et al., 2011).

Clark and Boswell (1991) describe the one-vs-all decomposition strategy, which is also well-
known. In this strategy, one classifier is learned for each class, which learns to distinguish the
class from all other classes. The single class that is detected in this one-vs-all approach is the result
of the classification. It is important to notice that this strategy is very similar to Softmax, with
the main difference being that Softmax learns all binary classifiers simultaneously, whereas in the
described one-vs-all strategy, the classifiers are learned separately (Pawara et al., 2020).

2.3 Ensemble Learning
Ensemble learning techniques use multiple machine learning algorithms to generate predictive
outcomes. These methods combine the outcomes using various voting mechanisms, resulting in
superior performance compared to any individual algorithm used in isolation (Zhou, 2012).

The one-vs-one approach from Section 2.2 can also be extended to sets. One cannot only com-
pare one-vs-one class but also a set-vs-set, whereby a set consists of multiple classes. However,
not much research is conducted on set-vs-set classification. One of the few papers touching upon
set-vs-set classification is from Vareto and Schwartz (2020) in the domain of open-set face identi-
fication. They employ Affinity Propagation Clustering (APC) to cluster the data (Frey and Dueck,
2007). In the paper of Vareto and Schwartz (2020) when a query sample is presented, the APC
algorithm selects the most similar clusters and creates a training subset. During training, subjects
from this subset are randomly divided into positive and negative subsets for training the ensem-
ble models. During testing, the query sample is presented to the ensemble to obtain response
values, which are then used to rank the samples with a simple voting procedure. Afterward,
thresholding is applied to determine whether the probe sample belongs to the face training set or
should be rejected as unknown.

Bagging (bootstrap aggregation) was first presented by Breiman (1996) and is one of the most
commonly used ensemble learning approaches. The bagging algorithm constructs sample subsets
by randomly selecting from the training dataset. These subsets are then employed to train indi-
vidual base models of the same type for integration. Afterward, a simple majority vote is taken
from the individual decisions which results in the most chosen class being the ensemble decision.

Gradient Boosting, introduced by Friedman (2002), uses an ensemble learning technique that
sequentially adds weak learners to the model, each correcting the errors of its predecessor. At
each iteration, the algorithm fits a new model to the residual errors of the ensemble, with a focus
on minimizing a specified loss function. This iterative process continues until a predetermined

8 Chapter 2. Related Work

number of weak learners, often decision trees, are included or until the model’s performance
converges.

AdaBoost is yet another ensemble learning technique, which was introduced by Freund and
Schapire (1997). It works by iteratively training a sequence of weak learners where each subse-
quent learner focuses more on the instances that the previous ones classified incorrectly. Dur-
ing training, AdaBoost assigns higher weights to misclassified instances. AdaBoost produces a
strong classifier by combining the predictions of these weak learners. This approach effectively
emphasizes the “hard” examples in the training data, improving the overall performance of the
ensemble.

Mixture of Experts (MoE), presented by Jacobs et al. (1991), is an ensemble method that uses
multiple separate networks trained simultaneously. In this approach, each network, known as
an “expert”, specializes in a particular subset or region of the input space. The outputs of these
individual networks are then combined, typically using a gating mechanism, to produce the final
prediction. Unlike many ensemble methods that use fixed weights determined during training
for their models, MoE dynamically assigns weights to its expert models based on each specific
input, allowing the system to adapt its predictions to different types of data. This allows MoE
to adaptively select the most relevant experts for a given input, improving prediction accuracy.
Additionally, MoE can handle complex relationships within the data by effectively partitioning
the input space and leveraging the strengths of different experts.

2.4 Convolutional Neural Networks
CNNs are inspired by the visual nervous system found in vertebrates, which can detect pat-
terns based on geometrical similarity without being affected by their position in the visual field
(Fukushima, 1980). Hubel and Wiesel (1959) discovered that in cats, when visual stimuli are
present, the firing of neurons in the visual cortex is affected in a certain area known as the recep-
tive field of these stimuli. According to Lecun et al. (1998), an early researcher to employ CNNs,
local receptive fields are one of the main concepts on which CNNs are based. These receptive
fields allow the network to extract elementary visual features such as edges, endpoints, or cor-
ners, which are aggregated in the later layers of the CNN to detect higher-order features. This
operation, named convolution, passes a kernel over the input that does element-wise multiplica-
tion between the kernel and the input. A remarkable property of this feature detection operation
is that it is independent of the location of the feature in the entire input. Formally, the convolution
operation with an element of the input image x and an element of the convolutional kernel w with
the dimensions I and J is defined as:

om,n =

I∑
i

J∑
j

xm+i−1,n+j−1 · wi,j (2.1)

om,n is the element of the output matrix obtained by element-wise multiplication between w and
x.

According to Goodfellow et al. (2016) convolution leverages three main ideas that make it so
powerful. Sparse interaction is one of those ideas and describes the property achieved by using a
kernel that is smaller in size than the input image, which allows the convolution to detect small
and meaningful features in the input image, which might only span over a small number of pix-
els. The second idea is parameter sharing, which describes that each element of the kernel is used
at almost every position in the input, except maybe the pixels on the edge. So instead of learning
a different set of parameters for every input location, only one set has to be learned. This is quite
different from a fully connected network, where each weight is only used once for computing the

2.4 Convolutional Neural Networks 9

output of a layer. The last idea is equivariance to translation, which in simple terms says that
if the input changes the output changes in the same manner. This is a useful property because
the convolution creates a 2-D feature map of where specific features appear in the input. If the
object in the input is now moved, the feature in the feature map shifts the same amount. Good-
fellow et al. (2016) mention that the typical convolutional layer can be separated into three stages.
The first stage, also named the convolution stage, performs multiple convolutions in parallel to
output a set of linear activations. In the second stage, named the detector stage, the previously
produced linear activations are run through a nonlinear activation function. Lastly, in the third
stage, named the pooling stage, the output is modified further. This is achieved by using a pool-
ing function that replaces the output at a specific location with a summary statistic of the nearby
outputs (Goodfellow et al., 2016). Pooling therefore enables the net to be invariant to small trans-
lations of the input, which means that when the input is translated by a small amount most of
the pooled outputs are not subject to change. In a typical CNN, the three stages described are re-
peated multiple times depending on how many convolutional layers are used (Goodfellow et al.,
2016). When doing classification, normally the convolutional layers are followed by some fully
connected layers to do the final classification (Lecun et al., 1998).

Since the inception of LeNet-5, a popular CNN consisting of seven trainable layers developed
by Lecun et al. (1998), there have been significant improvements. One of these is building deeper
networks, like AlexNet presented by Krizhevsky et al. (2012), which won the ImageNet visual
recognition challenge in 20122, which consists of 1000 different classes. AlexNet includes a to-
tal of eight trainable layers of which five are convolutional layers and three are fully connected
ones. Krizhevsky et al. (2012) state that going deeper by adding more convolutional layers is not
just straightforward, and they encountered severe overfitting early on in their development of
AlexNet. To mitigate this problem, they used data augmentation techniques such as image trans-
lations and horizontal reflection; further, they applied dropout with a probability of 0.5 in the first
two fully connected layers of AlexNet. Dropout is a technique that switches certain neurons off,
with a certain probability, during the training of the neural network (Hinton et al., 2012). This
forces the network to learn more robust features and prevents the network from relying too much
on some neurons. Based on the success of AlexNet research interest in CNNs sparked (Good-
fellow et al., 2016). Simonyan and Zisserman (2015) presented VGGNet which used a deeper
architecture and smaller kernels than most of its predecessors like AlexNet. Whereas AlexNet
used a kernel of size 11×11 in its first layer, the VGGNet only used a kernel of size 3×3 through-
out all its layers. In terms of depth, they presented VGGNets between 11 and 19 trainable layers
and showed that generally, the classification accuracy improved for deeper VGGNets. Conclud-
ing Simonyan and Zisserman (2015) showed that large kernels can be replaced by using smaller
kernels with deeper networks.

While deep networks suffer from vanishing/exploding gradients there have been solutions to
this problem, such as using normalization in the initialization layers (LeCun et al., 2002; Glorot
and Bengio, 2010). However, there exists another problem that causes a degradation in perfor-
mance when adding more layers and therefore making the network deeper (He et al., 2016). Ac-
cording to He et al. (2016), there exists a constructed solution that enables deeper networks with-
out a decrease in performance when compared to shallower counterparts. This can be achieved
by taking the trained layers from the shallow network and adding additional layers, which just
do an identity mapping, ensuring the input is the same as the output. However He et al. (2016)
state that the solvers are unable to find solutions that are on par or better than a constructed so-
lution. With residual learning, they allow the layers to fit a desired underlying mapping directly,
instead of hoping to achieve a mapping through several layers. In mathematical terms, the resid-
ual function can be expressed as f(x) = h(x)− x (He et al., 2016). This allows the layers to fit the
residual mapping, which is easier than fitting the original, unreferenced mapping (He et al., 2016).

2https://image-net.org/challenges/LSVRC/2012/results.html

https://image-net.org/challenges/LSVRC/2012/results.html

10 Chapter 2. Related Work

He et al. (2016) used these residual building blocks in their Residual Network (ResNet) architec-
ture and proposed several networks with 18, 34, 50, 101, and 152 layers, while the ResNet-18 and
34 networks used a residual connection after two layers and the remaining ones one after three.
Generally speaking, more layers seemed to offer better performance, while the ResNet-50 offered
a good tradeoff between performance and training time.

Since the introduction of ResNets, there has been more progress made in CNNs. This is only
touched upon briefly since we do use a ResNet-50 in our main experiments later on. Huang et al.
(2017) presented Dense Convolutional Networks (DenseNets), which connect all layers to every
other layer in a feed-forward fashion. This brings several advantages with it, such as alleviating
vanishing gradients, strengthened feature propagation and reuse. With CNNs becoming more
complicated and deeper, they were unsuited for mobile and embedded applications due to mem-
ory and latency bottlenecks. That’s why MobileNets were introduced by Howard et al. (2017).
MobileNets use depthwise separable convolutions to reduce the computational complexity while
being effective across a wide variation of tasks, such as object detection and facial attribute de-
tection. In recent years Vision Transformer (ViT) based architectures have outperformed classic
CNNs on many tasks (Liu et al., 2022). However, Liu et al. (2022) showed with their ConvNeXt
architecture that the ViT-based architectures can be outperformed using a combination of only
classical CNN building blocks, which have not been combined in this fashion before.

Chapter 3

Background

This chapter provides the foundational concepts required for understanding the experiments con-
ducted in this master thesis. It covers common activation and loss functions used for image clas-
sification tasks, open-set methods to incorporate negative samples into training, and introduces
the Open-Set Classification Rate (OSCR) for evaluating open-set models.

3.1 Activation and Loss Functions for Classifica-
tion

In the following section, we touch upon activation and loss functions, which are widely used in
AI and especially image classification tasks. The goal is to foster a general understanding of the
theoretical concepts, which is required as a basis for the experiments conducted later.

3.1.1 Softmax Activation and Cross-Entropy Loss
When following a standard classification approach, the model outputs a probability distribution
over the C classes, where the probabilities sum to 1, representing the likelihood that the sample
belongs to each class (Goodfellow et al., 2016). The network does not directly output a probability
distribution but rather a vector of logits, which needs to be converted to a vector of probabilities.
This is often done by using the Softmax function ϕ(zn) below, adapted from Goodfellow et al.
(2016):

ϕ(zn)c =
ezn,c∑C

c′=1 e
zn,c′

(3.1)

The vector z represents logits of size C, the number of classes. The normalization of Softmax
ensures that the resulting probabilities lie in a range between 0 and 1, and collectively sum to 1,
forming a valid probability distribution.

Following the generation of the probability distribution typically involves computing a loss
value that represents the dissimilarity between the predicted and actual probability distribution.
One such metric, that has gained popularity and is often used in classification, is the categorical
cross-entropy loss (Goodfellow et al., 2016). Extended from Zhang et al. (2021) it is defined as
follows:

LCCE = − 1

N

N∑
n=1

C∑
c=1

tn,c log(yn,c) (3.2)

12 Chapter 3. Background

With yn,c representing the predicted probability for sample n belonging to class c. N is the number
of samples in the dataset and tn,c is the true probability that sample n belongs to class c. It is 1 if
the sample is of class c and 0 otherwise. The log is taken because it increases monotonically and
therefore penalizes wrong predictions drastically when a prediction is near 0 for a true class.

3.1.2 Sigmoid Activation and Binary Cross-Entropy Loss
Above we see the the Softmax activation function and cross-entropy loss, which are often used
when a network should classify an input into one of many classes. However, for binary classifica-
tion tasks, the Sigmoid activation function and binary cross-entropy loss are typically used. In the
following, these are briefly explained. Zhang et al. (2021) mention that the sigmoid function is a
good solution for binary classification when we want to obtain probabilities from the model out-
put. The sigmoid function acts as a squashing function, which takes the logit output of the model
and transforms it to a number between 0 and 1, which represents the probability. It is defined as:

σ(z) =
1

1 + e−z
(3.3)

where z is the logit output of the network, which can theoretically range from −∞ to ∞. The
result is the probability of the positive class in our case 1.

To compute the loss of the binary classifier, often binary cross-entropy loss is used. In mathe-
matical terms, it is defined as follows:

LBCE = − 1

N

N∑
n=1

(tn log(yn) + (1− tn) log(1− yn)) (3.4)

Where tn is the true label either 0 or 1 for the n-th sample. On the contrary, yn is the predicted
probability by the model. With including 1

N we normalize the loss values by the number of
samples, e.g., the current batch size. Batch size refers to the number of samples fed through the
network at each iteration. Normally after passing through a batch the model’s parameters are
updated.

3.1.3 Focal Loss
Lin et al. (2017) proposed the Focal Loss, a novel loss function designed to address the issue of easy-
to-classify examples overshadowing hard ones. The focal loss is an adaptation of the binary cross-
entropy loss and incorporates two mechanisms to handle class imbalance and easy-to-classify
samples. Adapted from Lin et al. (2017) it is defined as follows:

LFL = − 1

N

N∑
n=1

(αn(1− yn)
γtn log(yn) + (1− αn)y

γ
n(1− tn) log(1− yn)) (3.5)

The focal loss assigns a weighting factor α to balance the importance of positive and negative
examples. Secondly, it introduces a factor (1− y)γ , where y is the predicted probability and γ ≥ 0
is a tunable focusing parameter. This modulating factor assigns higher loss values to hard-to-
classify examples, while down-weighting the easily classified ones. When γ = 0, the focal loss is
equivalent to the binary cross-entropy loss with class-weighting. As γ increases, the contribution
of easy examples to the overall loss is diminished, effectively extending the range in which an
example receives a low loss. The focal loss mitigates the dominance of easily classified samples
in the gradient computation, enabling the model to focus more on challenging examples and
potentially allowing the model to learn better features.

3.2 Training with Negatives 13

3.2 Training with Negatives
As mentioned briefly in Section 2.1 training an open-set classification network with negative sam-
ples is an approach that often brings improved performance compared to networks trained with-
out negatives. Negative samples can be obtained in various ways as mentioned in Section 2.1,
such as using real negatives from a different dataset, modifying known samples, or even gener-
ating negative samples artificially (Bisgin et al., 2024). With the availability of negative samples,
they can be incorporated into the training of the network.

The Entropic Open-Set (EOS) loss (Dhamija et al., 2018) keeps the deep feature magnitudes
low compared to the garbage class approach, whereby just being a simple extension of the cross-
entropy loss computed on Softmax scores in Equation 3.2. The EOS loss works on a network with
C outputs and does assume one-hot-target encoded values for the known samples, adapted from
Bisgin et al. (2024):

∀n, c ∈ {1, . . . , C} : tn,c =

{
1 c = τn

0 otherwise
(3.6)

with τn being the class label of sample n where 1 ≤ τn ≤ K whilst K stands for the known
classes. For the negative samples, identical target values are used:

∀n, c ∈ {1, . . . , C} : tn,c =
1

C
(3.7)

3.3 Open-Set Classification Rate (OSCR)
As described by Dhamija et al. (2018), the previously used metrics to evaluate open-set perfor-
mance were all flawed in one way or the other, urging the need for a new metric. Dhamija et al.
(2018) proposed the Open-Set Classification Rate (OSCR), which results from the Correct Classifica-
tion Rate (CCR) and False Positive Rate (FPR), defined by Bisgin et al. (2024) as follows:

CCR(θ) =

∣∣{n | τn ≤ K ∧ argmax
1≤c≤K

yn,c = τn ∧ yn,c ≥ θ}
∣∣

|NK |
(3.8)

FPR(θ) =

∣∣{n | τn > K ∧ max
1≤c≤K

yn,c ≥ θ}
∣∣

|NU |
(3.9)

Where θ is a probability threshold and n iterates all the test samples. NK denotes the total number
of known test samples, whereas NU represents the total number of unknown or negative test
samples. τn ≤ K indicates a known test sample and τn > K an unknown/negative test sample,
with τn representing the label of sample n. Furthermore, yn,c is the probability of nth sample for
class c.

The OSCR curve is generated by plotting the FPR on the x-axis and the CCR on the y-axis,
while varying the threshold from the lowest to the highest possible probability value. So for a
given threshold θ, the corresponding CCR and FPR value is plotted. The curve is normally drawn
with a logarithmic FPR axis because most applications require a low false positive rate. The
optimal OSCR curve lies in the upper left corner, with a CCR being equal to 1 while the FPR is
equal to 0. Bisgin et al. (2024) mention that when the probability score yn,c reaches the maximum
value of 1 to any reasonable precision, there exists no threshold θ such that low FPR values can
be computed, resulting in the OSCR curve not extending further to the left. Palechor et al. (2023)
point out that the CCR, which is highly correlated with the accuracy of the known classes, might
be biased when the number of known test samples per class is unbalanced. The reason for this

14 Chapter 3. Background

potential bias is that the CCR is computed as an average over all known test samples without
considering the class imbalance. If one known class has significantly more test samples than
others, its contribution to the overall CCR will be higher, even if the classifier performs poorly
on other known classes with fewer samples. Therefore, in our experiments, we ensure that we
always have a balanced test set.

Chapter 4

Data

This chapter shows which of the many available image-based datasets were selected. In addition,
the datasets are explained in detail. It is further explained why exactly these datasets for the
experiments were selected.

4.1 MNIST & EMNIST
The MNIST dataset consists of handwritten digits (0-9) in the format of grayscale 28 × 28 pixel
images (Lecun et al., 1998). This small data size per sample, together with the low number of only
10 classes, makes it perfect for fast experimenting and validation of ideas. The MNIST dataset has
60k training and 10k test samples. Since we also need unknown and negative samples in some
experiments, MNIST is too small as a dataset alone. Luckily, there exists an extension of MNIST
mentioned in the following.

The EMNIST dataset consists of handwritten digits, lower- and uppercase letters in grayscale
28 × 28 pixel images (Cohen et al., 2017). The EMNIST letter dataset includes only letters con-
sisting of 387k training and 24k testing samples. The EMNIST letters are used as negatives and
unknowns in the experiments. MNIST and EMNIST both rely on the same base data, the NIST
database (Grother and Hanaoka, 1995). This database is hardly usable by itself with our modern
computer systems due to its age and the compression format used for storing it (Cohen et al.,
2017). To make EMNIST as comparable as possible to MNIST, from the data processing perspec-
tive, Cohen et al. (2017) have followed the MNIST conversion steps described by Lecun et al.
(1998) to have a comparable end result. However, they used a different downsampling method
to handle the variation in the size and shape of the characters in the NIST dataset. This results in
the EMNIST dataset being more visually blurry when compared to MNIST (van den Bergh, 2023).
This fact may render the distinction between MNIST and EMNIST letters easier for a neural net-
work, and that is why we use the EMNIST digits dataset instead of the original MNIST dataset for
the digits. This guarantees all samples underwent the same preprocessing steps, which ensures
that there are no unintentional differences stemming from this aspect.

In Table 4.1 the EMNIST splits used in the preliminary experiments in Section 6.2 can be seen.
We follow van den Bergh (2023) and do exclude the letters g, i, l, o from our dataset because
they are visually often very similar to the digits 9, 1, 1, 0 respectively and do therefore pose a
separability problem between known and unknown classes, which would make it impossible for a
neural network to learn distinct features. We justify this approach with our interest in the relative,
rather than absolute performance, between different approaches in our preliminary experiments.

16 Chapter 4. Data

Table 4.1: EMNIST SPECIFICATION FOR PRELIMINARY EXPERIMENTS. The table shows the EMNIST
splits namely training, validation and test, which we use during our preliminary experiments.

Dataset Split Known Samples (Positives) Unknown Samples (Negatives)
Training EMNIST digits First 14 EMNIST letters (except g, i and l)
Validation EMNIST digits First 14 EMNIST letters (except g, i and l)
Test EMNIST digits test set Last 12 EMNIST letters (except o)

4.2 ImageNet Open-Set Classification Protocols
ImageNet1 is a large-scale dataset that is built upon the WordNet synsets (Deng et al., 2009). At
its release, it spanned over 5247 categories with an average of 600 labeled images per category.
Since then, up until the year 2024, the ImageNet dataset continued to grow to about 14 million
images over 22k synsets. With this size, ImageNet is one of the largest labeled image datasets
publicly available. However, the largest benefit of ImageNet is not just the sheer size of it, but
rather the underlying semantic WordNet structure, which results in several relations between the
synsets with “IS-A” being the most useful (Deng et al., 2009). These relationships together with
the massive amount of data available, e.g., 147 dog categories, make ImageNet so popular among
researchers. Based on the 1000 classes from the ILSVRC 2012 and the master thesis from Bhoumik
(2021), Palechor et al. (2023) proposed three different protocols that create artificial open environ-
ments for training and evaluating open-set algorithms. The three protocols offer a progressive
level of difficulty by increasing the level of visual similarity among inputs and the amount of
overlap between features of known and unknown classes.

Protocol 1 (P1), involves a scenario where the known and unknown classes are quite dissimi-
lar, both in terms of semantic meaning and visual characteristics. The known classes comprise 116
dog breeds, which represents a challenging, fine-grained closed-set classification problem within
a single broader category. In contrast, the unknown classes consist of 166 non-animal classes that
are distinctly different from the known dog breeds. The negative classes include other four-legged
animals. This setup creates a clear separation between the known and unknown categories, mak-
ing it theoretically fairly easy for open-set classification algorithms, as the known and unknown
samples do not exhibit significant overlap or similarity.

Protocol 2 (P2), consists only of animal classes. The known classes are made up of 30 hunting
dog classes posing more of a challenge than P1 in terms of a closed-set classifier. The remaining 31
hunting dog classes are used as negative classes. Other four-legged animal classes are being used
as unknown classes. Although the known and unknown classes are still semantically distinct
from each other, they share certain visual characteristics, such as the presence of fur, making it
theoretically harder for open-set classification algorithms to perform well. P2 is the smallest of
the three protocols, with about a fourth of the number of training samples compared to P1, which
makes it an excellent protocol for hyperparameter optimization.

Protocol 3 (P3), is made up of a mix of common classes including animals, plants, and objects.
There are 151 known classes, 97 negative classes, and 164 unknown classes. This constellation
makes it very hard for open-set classification algorithms to perform well since the known and
unknown classes share many similarities. Of the three protocols, P3 is the easiest to distinguish
within the known classes, as they are only slightly similar.

The above ImageNet open-set classification protocols were chosen because of their clear def-
inition and varying difficulty regarding open-set classification. Due to their recent publication,
these protocols have not had the chance to be widely adopted in open-set classification papers

1https://www.image-net.org/

https://www.image-net.org/

4.2 ImageNet Open-Set Classification Protocols 17

and are currently only used in a paper in progress from Bisgin et al. (2024). Nonetheless, the
structure of the protocols seems mature and we therefore use them in our work.

Chapter 5

Approach

To tackle the open-set classification problem we propose a novel approach that uses an ensemble
of binary classifiers. This approach involves a few steps such as modeling a multiclass classifi-
cation as a binary classification, training a binary ensemble model, and finally aggregating the
predictions from the model into a classification output. The approaches to these problems are
described in the following.

5.1 Creating a Binary Classification Problem
To train an ensemble of binary classifiers we have to partition the dataset for each classifier sep-
arately, this allows each binary classifier to learn a unique discrimination task. For partitioning
into a binary problem, we can use a completely random approach, which is similar to the strategy
used by Vareto et al. (2023); Vareto and Schwartz (2020) for face recognition problems, or try to
optimize the distance between classes.

5.1.1 Random Partitioning of Classes
We define the ensemble of binary classifiers as a matrix E as:

∀b ∈ {1, . . . , B}, c ∈ {1, . . . C} : Eb,c ∈ {0, 1} (5.1)

with B being the total number of binary classifiers in the ensemble and C being the total number
of classes. For training a single binary classifier Eb,∗, the set of classes C is randomly split into two
disjoint partitions, which if possible are sized equally. Formally we define this as:

∀b : (E0
b,∗ ∪ E1

b,∗ = C) ∧ (E0
b,∗ ∩ E1

b,∗ = ∅) ∧ (

C∑
c=1

E0
b,∗ ≈

C

2
) (5.2)

To prevent any two binary classifiers out of the ensemble from learning to distinguish among the
same split, it is necessary to enforce the condition that no two binary classifiers share the same
class partition. Mathematically, we express this constraint as follows:

∀b1, b2 : b1 ̸= b2 =⇒ E0
b1,∗ ̸= E0

b2,∗ (5.3)

Furthermore, to avoid symmetry, we want to ensure that no two partitions represent the same
classes but with inverted labels (mirrored partitions). This condition can be formalized as:

∀b1, b2 : E0
b1,∗ ̸= E1

b2,∗ (5.4)

20 Chapter 5. Approach

Classes (C)
Random Partitioning

b1

b2

b3

Partition
0 1

En
se

m
bl

e
b1

b2

b3

Partition
0 1

En
se

m
bl

e

b1

b2

b3

Partition
0 1

En
se

m
bl

e

Same Partition

Mirrored Partition

Figure 5.1: RANDOM PARTITIONING OF CLASSES. This figure shows a visual example of the random
partitioning of the classes. Additionally, the constraints are shown in the upper two ensembles. The en-
semble at the top is invalid due to the constraint in Equation 5.3, whereas the ensemble in the middle is
invalid due to the constraint in 5.4. The ensemble at the bottom respects all the constraints outlined and is
therefore valid.

A visual example of an ensemble consisting of four different classes with three binary classifiers
can be seen in Figure 5.1, also the constraints defined above can be seen visually.

Furthermore, when defining an ensemble E for C classes there is a minimum and maximum
number of binary classifiers that result from the constraints outlined above. The minimum num-
ber of binary classifiers for a given number of classes C is defined as follows:

Bmin = ⌈log2 C⌉ (5.5)

This equation results from the constraint that for each c ∈ C we need to have a unique binary
representation. This results in 2B ≥ C, we reshape this equation by taking the logarithm on both
sides and rounding up to the next bigger integer, since B must be an integer. On the other hand,
we define the maximum number of possible binary classifiers as follows:

Bmax =

{
(C
C/2)
2 if C is even(

C
(C−1)/2

)
if C is odd

(5.6)

When C is even we choose C/2 out of C, which can be calculated using the binomial coefficient.
This resulting number then needs to be divided by 2 to account for the mirrored partition con-
straint outlined in Equation 5.4. In the case when C is an odd number, the equation changes due

5.1 Creating a Binary Classification Problem 21

b1

b2

b3

Classes

En
se

m
bl

e 0 0 1 1

0 1 1 0

1 0 1 0

2
2
2
2
2
2

Class-wise
Distance

Figure 5.2: CLASS-WISE DISTANCE. This figure shows a visual example of the class-wise distance. The
binary representation of the classes given through the different binary classifiers inside the ensemble can
be used to calculate an element-wise difference between two classes. The resulting class-wise distance is
shown in the table on the right for all the combinations of any two classes.

to the binary partition which cannot be balanced anymore (same number of classes in partition 0
and 1). We are choosing now (C− 1)/2, which represents the smaller partition, out of C to get the
number of ways to choose the larger partition. Since this partition is never balanced, its mirror is
always a different partition, so we do not need to divide by two to account for that.

5.1.2 Partitioning with maximizing Hamming Distance among
Classes

Except for adhering to the constraints outlined, partitioning the original classes is done com-
pletely random in Section 5.1.1. However, this may not be optimal when considering the result-
ing class-wise distance, which results from their binary vector representation. A visual example
of the class-wise distance can be seen in Figure 5.2 where we first see a binary representation of
the classes that can then be used to calculate the class-wise distance between any two classes.
Generally speaking, we want the class-wise difference between the binary vector representations
of the classes to be as large as possible, as this hopefully makes the ensemble E more resistant
to classification errors of single classifiers Eb,∗. In simple terms, because the classes have larger
class-wise distances among all classes, we minimize the risk of false classification from the whole
ensemble when an individual classifier makes an error in its prediction.

We can measure this class-wise distance by computing the Hamming distance, which measures
the difference between two points (Hamming, 1950). In Equation (5.7) the Hamming distance is
adapted to our case, where we want to calculate the Hamming distance between any two binary
vector class representations, as the number of positions where those two vectors differ. We define
the Hamming distance as follows:

∀c1, c2 : δ(Eb,c1 ,Eb,c2) =

B∑
b=1

|Eb,c1 − Eb,c2 | (5.7)

Now instead of just randomly generating the binary partitions, we select the first binary subset for
the classifier randomly b1, and afterward for all remaining binary classifiers we take the partitions
that find the maximum minimum (infimum) Hamming distance between the classes among all
other classifiers greedily, as can be seen in Algorithm 1.

22 Chapter 5. Approach

Algorithm 1 MAXIMIZING HAMMING DISTANCE BETWEEN CLASSES. This algorithm creates
n_classifiers number of binary partitions for n_classes, while maximizing the minimum (infimum)
distance between any two classes (columns of the matrix) by greedily adding the binary classifiers.

procedure MAXIMUM_HAMMING_DISTANCE(n_classifiers, n_classes)
combinations← nested vector list of the cartesian product of 0 and 1 with length n_classes
balanced← empty list
for vector in combinations do

if vector starts with 1 then ▷ Avoids inversion
continue

end if
if n_classes is even and sum(vector) equals n_classes / 2 then ▷ Balanced partitions

append vector to balanced
else if n_classes is odd and sum(vector) equals (n_classes− 1) / 2 or

(n_classes+ 1) / 2 then
append vector to balanced

end if
end for
binary_partitions← append random first vector from balanced
remove vector in binary_partitions from balanced
while len(binary_partitions) < n_classifiers do

min_column_ham_dist← empty list to save the min Hamming dist per combination
for combination in balanced do

matrix← vertically stack (binary_partitions, combination)
min_column_ham_dist← append min_ham_dist_between_all_col(matrix)

end for
infimum_col_dist_indices←maximum value indices from min_column_ham_dist
vector_index← choose random index from infimum_col_dist_indices
binary_partitions← vertically stack

(binary_partitions, balanced_combinations[vector_index])
end while
return binary_partitions ▷ Returns matrix of shape n_classifiers× n_classes

end procedure

5.2 Separate and Combined Binary Classifiers
For the separate approach, we use a backbone network architecture, such as LeNet-5 for the EM-
NIST dataset, as the base model. Each binary classifier b ∈ B is then trained separately and learns
its binary classification task. The binary partition of each binary classifier is defined as in Sec-
tion 5.1.1 and does adhere to the constraints in the Equations 5.3 and 5.4. For each sample, the
separate binary classifier model outputs a prediction yb ∈ [0, 1]. This process is repeated for all
binary classifiers in the ensemble, resulting in B independently trained models, of which the pre-
diction can be combined to obtain the classification output of the ensemble for a given sample, as
can be seen in Section 5.3.

Instead of training each binary classifier separately, we can also use a combined approach.
In this combined approach, we also use the same backbone network, however, the backbone
is shared among all binary classifiers and outputs multiple predictions simultaneously. The com-
bined network has B binary outputs, one for each binary classifier b ∈ B, instead of having B
separate models as in the separate approach. The combined network is trained on all splits si-

5.2 Separate and Combined Binary Classifiers 23

Network y2

Network y3

Network y4

Network y1

(a) Separate Approach

Network

y1

y2

y3

y4

(b) Combined Approach

Network

y1

y2

y3

y4

FC

(c) Combined Large Approach

Network

y1

y2

y3

y4

FC

FC

FC

FC

k

(d) Combined+ Approach

Figure 5.3: SEPARATE VS. COMBINED VS. COMBINED LARGE VS. COMBINED+ APPROACH. The
separate approach (a) trains each network separately, whereas the combined approach (b) trains only one
network with multiple classifiers. The combined large (c) and combined+ (d) networks extend the combined
approach by training an additional fully connected layer or two fully connected layers of dimensionality k
per network activated with ReLU respectively.

multaneously and optimizes an averaged loss function that incorporates the individual losses for
each classifier, ensuring that it learns to discriminate between its corresponding binary partition.
A depiction of both approaches can be seen in Figure 5.3.

Separate binary classifiers do need more computational resources to train when compared to
the combined approach. This is because they normally have much more learnable parameters
and each data sample has to be accessed multiple times. Rudd et al. (2016) have shown that their
combined approach even outperforms their separate approach when measured on the classifi-
cation error rate of recognizing facial attributes. This is promising in terms of the performance
difference between our separate and combined approaches.

CNNs trained on images all learn similar first-layer features, such as Gabor filters or color
blobs, regardless of the specific dataset that is used (Yosinski et al., 2014). This results in the CNN
learning to detect edges and corners early on. With this in mind, the separate approach could
be an unnecessary overhead of computation because the features learned in the first few layers
are likely the same for each network. On the other side, the combined approach could give the
network too little room to learn a good feature map for every binary classifier.

24 Chapter 5. Approach

Table 5.1: EXAMPLE OF BINARY CLASS ENCODING. For each binary classifier in the ensemble E, the
binary encoding for each class c ∈ C is given. Every class has a unique binary encoding, which is shown
in each column of a class. For c1 the binary encoding would be (0, 1, 0).

Binary Classifier Classes
c1 c2 c3 c4

b1 0 0 1 1
b2 1 0 1 0
b3 0 1 1 0

This is why we introduce additionally two slight variations of the combined approach. The sim-
pler one is the combined large network, which just extends the combined approach by an additional
fully connected layer in its final layer. This increases the capacity of the combined large network
and allows it, theoretically, to learn more complex non-linear relationships between the features.
Moreover, this would then in an optimal case result in better classification performance, when
compared to the standard combined network. Building upon this idea of more fully connected
layers, we present a second variation of the combined approach, namely the combined+ approach,
which can be seen in Figure 5.3d. In this combined+ approach, the architecture is the same as in
the normal combined approach, except for the last output layer. Whereas in the combined approach,
the last layer consists of a single fully connected layer that produces all the binary outputs, in the
combined+ approach the output layer consists of two separate fully connected layers for each bi-
nary classifier in between which ReLU activation is used. The number of optimal parameters of
these two layers is denoted with k in Figure 5.3d and is subject to fine-tuning. This gives the
model much more capabilities to learn the binary classification task among its two sets, while
preventing most of the computational overhead of the separate approach. In theory, this approach
combines the best of both worlds.

5.3 Obtaining a Classification Score from the En-
semble Model Output

When using an ensemble model with either the separate or combined/+ approach, as described
in Section 5.2, one gets many binary outputs, each corresponding to the specific binary partition
the model has been trained on. However, in the experiments, we are working with datasets that
contain way more than only two initial classes. Resulting from this, a single binary prediction is
insufficient to determine the class to which input sample x belongs. Luckily, for a given sample x,
we have one binary prediction of each model b in the ensemble E. All those binary predictions can
be combined, resulting in a single prediction. This is based on the unique binary encoding, de-
fined for each class in C, which is defined in Section 5.1.1 and is exemplarily depicted in Table 5.1.
To calculate the ensemble model’s final prediction, we compare the binary classifier outputs from
the ensemble, which we define as a matrix of predictions Yb,c, to the unique binary encodings
of each class given in Eb,c, selecting the class that most closely matches the ensemble’s output.
This is done by computing the Hamming distance defined in Equation 5.7 between the binary
representations of the classes and the predictions of the ensemble:

ρ(E,Y) =

{
δ(Eb,c,Yb,c) if no threshold
δ(Eb,c, ⌊Yb,c⌉) if threshold

(5.8)

Whereas E corresponds to the matrix of target labels for each binary classifier. On the other

5.3 Obtaining a Classification Score from the Ensemble Model Output 25

hand, Y is the matrix composed of all individual binary classifier predictions after applying sig-
moid to obtain probabilities between 0 and 1. These probabilities can be used to calculate the
Hamming distance, also named similarity score ρ, or they can be further processed by applying
a threshold, to round the probabilities to their nearest integer value, which is either 0 or 1 and is
depicted as ⌊Yb,c⌉. The resulting similarity score obtained for each possible class shows the most
probable true class given the input sample. The lower the score the better and therefore the more
similar the class is to the model’s prediction. To obtain the predicted class from the similarity
scores one can simply apply argmin ρ.

The model outputs can also be used directly without applying sigmoid activation. In this
special case, where we use the logits directly, the Equation (5.8) is not applicable because the
logits are scaled between −∞ and +∞. To solve this problem, we use the following formula:

ρ∗(E,Y) =
C∑

c=1

((2E∗,c − 1)⊙ Y ∗,c) (5.9)

First, we convert the target labels in E to−1 and−1 respectively by applying the operation 2E−1.
Afterward, we calculate the Hadamard product of E and Y and sum over the columns. When
the logits are correct, so negative or positive for the −1 and 1 target respectively, the resulting
Hadamard product is also positive. In the case of an inverse prediction the resulting Hadamard
product is negative and does therefore reduce the resulting class similarity. Through applying
Equation 5.9 we obtain the class similarity for each class, where a higher score per class indicates
a greater similarity. To get the predicted class from the computed similarity scores one can just
select argmax ρ∗.

To obtain scores that can be interpreted as probabilities, and are therefore scaled between 0
and 1, from the resulting scores of Equations 5.8 and 5.9, we can apply the following formula:

y =

{
(B−ρ(E,Y))

B if ρ
(ρ∗(E,Y))

B if ρ∗
(5.10)

In conclusion, we show in Table 5.2(a) the three different evaluation approaches that we can
use before calculating the similarity score.

5.3.1 Training a Binary Ensemble with Negative Samples
In Section 3.2 we have shown the EOS and in Section 2.1 the garbage class approach, to incor-
porate negatives into training, when using a Softmax-based training method. The garbage class
approach is easy to implement as it just needs a reject option in case of an unknown sample,
however, Palechor et al. (2023) have shown that it is inferior to other approaches of incorporating
negatives into training. The EOS approach in contrast seems more promising but is infeasible in
its initial form because we do not work with Softmax. That’s why we need new, specific methods
that work with an ensemble of binary classifiers.

The most straightforward approach is integrating the negative class just as any other class,
resulting in C + 1 total classes. We call this the integrated approach from now on. The approach
is somewhat similar to the garbage approach. As in the garbage approach, we have one more class
that the network has to learn. The big difference, however, is that the network does not learn
an additional output for this negative class, but the negative class is simply integrated into the
binary partition and thus receives its binary encoding, as any other class does in Table 5.1. The
benefit of the integrated approach is its easy integration into the training process, as it almost
requires no change of the existing code. A potential downside could be that when there are
many more negative samples than the average number of known samples for binary classification,

26 Chapter 5. Approach

the network optimizes heavily for the negative samples because they are overrepresented in the
training dataset.

Another approach to integrating negatives into the training adapts the EOS approach shown
in Section 3.2 to our binary ensemble. We name this the equal approach. While the label for
the known samples is still either 0 or 1 per binary classifier, for negative samples the label has
an identical target value of 0.5. This can be computed similarly as in Equation 3.2, where now
C just has a value of 2 because a single binary classifier in the ensemble does only do binary
classification according to its unique partition. So in other words, we force the binary ensemble
to learn a logit output of 0 which correlates to 0.5 probability after using sigmoid for negative
samples. In theory, 0.5 as an output is the lowest value for each binary class 0 and 1, which
can be predicted by a binary classifier because it has the same difference to both values of 0.5.
The equal approach has the benefit of the network learning a different output for the negatives
than the known samples, which helps to distinguish negatives from known samples. Like the
integrated approach, the equal approach also suffers from an unbalanced number of negative and
known samples. This imbalance may affect the network’s ability to generalize effectively across
all sample types.

To focus more on the hard-to-classify samples when training with negatives, we do an experi-
ment using focal loss, described in Section 3.1.3. We use the provided PyTorch implementation of
focal loss1.

1https://pytorch.org/vision/main/_modules/torchvision/ops/focal_loss.html

https://pytorch.org/vision/main/_modules/torchvision/ops/focal_loss.html

5.3 Obtaining a Classification Score from the Ensemble Model Output 27

Table 5.2: EVALUATION APPROACHES AND METHODS FOR TRAINING WITH NEGATIVES. This
table shows the three evaluation approaches we use for evaluating the prediction of a binary ensemble model
(a). Further, the two approaches are shown, which are used to train binary ensembles with negative samples
(b). The approaches to incorporate negatives are independent of the evaluation approaches, opening up lots
of possible combinations.

(a) Evaluation Approaches

Evaluation
Method Description Advantages Disadvantages

Logits (ρ∗)

Use the logits
directly without

non-linear
activation function
as in Equation 5.9

No information
loss

May be prone to
overreaching of

logits and having
excessive influence
on final prediction

Sigmoid
Probabilities (ρ)

Sigmoid applied to
logits to get

probabilities as in
Equation 5.8

Interpretable
probabilities and

squashing of
excessive logits

Potential
information loss

due to the
application of

non-linear
transformation

Threshold
(ρ with threshold)

Sigmoid applied to
logits and then
thresholding of

probabilities as in
Equation 5.8

Simple decision
rule

Introduces severe
information loss

(b) Training Binary Ensembles with negatives

Method of
incorporating

Negatives
Description Advantages Disadvantages

Integrated
Integrate the

negative samples
like any other class

Needs almost no
adaption of the

code

With more
negative samples

than known
samples the binary
classifier may lose
performance for

the known
samples

Equal

Force a 0.5 sigmoid
probability output

for negative
samples

The ensemble is
forced to keep the
feature magnitude
for negatives low

May suffer from
unbalanced
negative vs.

known samples

Chapter 6

Experiments and Results

In this chapter, experiments are performed based on the approaches described in the Chapter 5.
Preliminary experiments are performed on the smaller EMNIST dataset and the final experiments
are performed on ImageNet.

6.1 Neural Networks
Since our main goal is to evaluate different binary ensemble approaches, the networks are gener-
ally trained with the same hyperparameters to obtain comparable results. The neural networks
are implemented in PyTorch1 and are all trained on Nvidia RTX 2080 Ti graphics cards with 11
GB VRAM. Furthermore, the whole code is publicly available on GitHub2 and is a fork from the
code used by Palechor et al. (2023).

6.2 Preliminary Experiments on EMNIST
For our preliminary experiments, we use a small LeNet-5, which enables fast iteration, as the
network trains very quickly due to the low computational needs. In the Table 6.1 the training
parameters which are used can be seen. The preliminary experiments serve multiple purposes:
due to the use of a small model, combined with the EMNIST dataset, they allow for fast itera-
tion which is crucial when experimenting with a novel approach, in our case binary ensembles.
Furthermore, the research questions RQ 1-3 can already be answered with our preliminary ex-
periments. The networks are evaluated on their CCR@FPR at the FPR of 10−3, 10−2, 10−1, 1, with
the latter representing the closed-set accuracy. The findings of these preliminary experiments are
then later applied to the experiments on the ImageNet protocols in Section 6.3.

To facilitate this, the setup and procedure in the preliminary experiments must be similar to
the subsequent experiments on the ImageNet protocols, while still allowing for potential neces-
sary adjustments. This is possible using the dataset described in Section 4.1. Furthermore, in the
preliminary as well as in the following experiments, a CNN is used as the backbone of the classi-
fier, which makes the experiments comparable, also in the dimension of network architecture.

1https://pytorch.org/
2https://github.com/Sirofjelly/openset-imagenet-comparison

https://pytorch.org/
https://github.com/Sirofjelly/openset-imagenet-comparison

30 Chapter 6. Experiments and Results

Table 6.1: TRAINING PARAMETERS OF PRELIMINARY EXPERIMENTS. This table shows the training
parameters used for the experiments on the EMNIST dataset. The separate and combined approaches are
as shown in Figure 5.3 and the baseline does use a traditional Softmax-based approach. Number of Models
is the number of models used simultaneously and Number of Binary Classifiers is the number of individual
binary classifiers which compose the ensemble of binary classifiers. Values separated by a “/” indicate that
this value is either one or the other depending on the experiment.

Hyperparameter Separate Combined/Large Baseline
Task Binary Classification Binary Classification Classification
Number of Models 40 1 1
Number of Binary
Classifiers (B) 40 126/40 No binary classifiers

Epochs 50 50 50
Batch Size 32 32 32
Loss BCE BCE/Focal Softmax/EOS
Optimizer SGD SGD SGD
Learning Rate 0.001 0.001 0.001

6.2.1 Optimal number of Classifiers and maximizing Distance
between Classes

The first experiment aims to answer RQ 1. Concretely, we test whether maximizing the Hamming
distance between classes leads to a better performance than a random approach (RQ 1.1). Fur-
thermore, in the same experiment, we evaluate whether more binary classifiers lead to a better
performance (RQ 1.2). To test this, a combined network with 126 binary classifiers, the maximum
number for 10 classes given the constraints in Section 5.1.1 and Equation 5.6, is trained one time
and then evaluated ten times on the validation set for all possible numbers of binary classifiers,
using both approaches, namely the random and the one that maximizes the Hamming distance
between the classifiers. We evaluate each approach ten times because this changes the binary clas-
sifiers that compose the ensemble each time, therefore possibly resulting in different CCR@FPR
scores. The resulting summed CCR@FPR are shown in Figure 6.1.

The theoretical summed minimum and maximum of the CCR@FPR are zero and four respec-
tively for a total of four FPR values. Considering this while looking at the results in Figure 6.1 we
see that the summed CCR@FPR values always lay between 2.2 and 2.5, which is a rather small
span. When looking at the differences for a given number of binary classifiers, we do see some
small differences for the random vs. Hamming distance class partitioning approach. The random
approach seems to reach a higher score of around 2.4 earlier between 15-20 binary classifiers,
whereas in contrast, the Hamming distance approach does reach this score much later with 50
binary classifiers. We observe a smaller standard deviation for the Hamming distance approach
when compared to the random approach. This is most likely due to the constraint of maximizing
the Hamming distance, which results in less variation.

When we look at the number of binary classifiers and their impact on the CCR@FPR values,
we observe a small trend towards more binary classifiers resulting in a better performance. The
biggest leap in performance is made between the minimum number of four and 20 binary clas-
sifiers for the random approach, after that the curve is flattening out. For the Hamming distance
approach, there is a more creeping improvement in performance which only starts flattening out
at around 80 binary classifiers. This is interesting as it does not align with our hypothesis in
RQ 1.1, where we assumed that a larger Hamming distance between the classes offers a better
classification performance than a random approach.

6.2 Preliminary Experiments on EMNIST 31

0 20 40 60 80 100 120

2.25

2.30

2.35

2.40

2.45

Su
m

m
ed

 C
CR

@
FP

R

Number of Classifiers
Hamming (mean)
Random (mean)

Standard Deviation
Standard Deviation

Figure 6.1: RANDOM VS. HAMMING DISTANCE APPROACH AND NUMBER OF BINARY CLASSI-
FIERS. This figure shows the number of binary classifiers on the x-axis and the summed CCR@FPR values
on the y-axis for the FPR at (10−3, 10−2, 10−1, 1). The Hamming curve depicts models that maximized
the minimum Hamming distance between classes as shown in Algorithm 1, compared to the random ap-
proach which just chose random models. Both approaches are evaluated ten times each and their mean and
standard deviation is shown. These curves result from the evaluation on the validation set.

In summary, we can say that using the Hamming distance approach for maximizing the dis-
tance between classes does seem to be inferior compared to the random approach. Furthermore,
for the number of binary classifiers, we did observe a slight trend which indicates that more clas-
sifiers can result in a marginally better classification performance. However, training with more
binary classifiers also leads to slightly increased training time. The biggest gain in performance
seems to be made when choosing more than the minimum number of binary classifiers, as de-
fined in Equation 5.5. Going forward, we use 40 binary classifiers for the following preliminary
experiments, due to the slightly faster training speed when compared to 126 classifiers, while
still resulting in a minimum Hamming distance between the classes of 20 when computing it as
seen in Equation 5.7 and visually in Figure 5.2. Furthermore, we do use the Hamming distance
approach for generating the classes, as it only adds an insignificant amount of extra time at the
beginning of the training. Although we have seen no performance increase when using it, it is
theoretically still a good approach to keep the Hamming distance rather larger than smaller due
to the increased error resistance.

6.2.2 Separate vs. Combined Binary Classifiers
By comparing separate and combined binary classifiers as described in Section 5.2 we want to an-
swer RQ 2.1. The resulting CCR@FPR values are shown in Table 6.2. We do see that, except for an
FPR of 10−3, the separate classifier outperforms the combined approach by a small margin. For
the FPR of 10−1, the separate approach achieves a remarkably higher score. This is most likely due

32 Chapter 6. Experiments and Results

Table 6.2: SEPARATE AND COMBINED BINARY CLASSIFIERS. This table shows the CCR@FPR values
on the validation set for separate and combined binary classifiers and an additional combined large network
that has been trained with an extra fully connected layer. B indicates the number of binary classifiers in
the ensemble. An empty cell means this specific CCR has not been reached for a given FPR value. The best
result per FPR value is marked bold.

Model B CCR@FPR
10−3 10−2 10−1 1

Separate 40 0.1001 0.7059 0.9943
Combined 40 0.0059 0.0716 0.5342 0.9871
Combined Large 40 0.0004 0.0267 0.5630 0.9887

to it having much more trainable parameters in total when compared to the combined approach.
An attempt to address this bottleneck and give the combined network more chance to learn the
partitions is to add an extra fully connected layer at the end. This has been done in the combined
large network shown in Figure 5.3(c). However, when we compare the CCR@FPR between the
two combined approaches, it becomes clear that this does not seem to improve performance. This
leads us to the conclusion that giving the network slightly more learnable parameters in its outer
layers does not benefit the overall result and for an effect probably even more parameters would
be needed in the outer layer.

In summary, we can say that the separate approach does seem to achieve a higher score. This
was almost to be expected due to the many more parameters to be learned, even if it could the-
oretically be accompanied by a simpler latent space due to the learning task of only one binary
classification per model. The big disadvantage of the separate approach is the training time,
which is many times longer due to the many models. This is also the reason why in the next
experiments the combined approach is used, even if it gives slightly worse results.

6.2.3 Evaluation Approaches
The binary ensemble model’s outputs can be used in various ways to obtain a final classification
score, as discussed in Section 5.3. With this experiment, we want to answer RQ 2.2. By training
one combined network with 40 binary classifiers and evaluating it using a threshold, probabili-
ties, and logits directly, we get the results shown in Table 6.3. The closed-set accuracy is nearly the
same for all three evaluation approaches and almost reaches 99%. When we look at the FPR for
10−1 and smaller, the threshold approach has not even reached this CCR@FPR. This indicates that
it is performing poorly on the open-set task and has given the negative samples such a high confi-
dence score that there is no threshold θ which allows computing low FPR values. Most likely this
is due to the very high information loss which occurs when we just use a threshold that projects
any negative logit to zero and any positive value to one. This is a large simplification that is not
beneficial and this gets even more obvious when we look at the probabilities and logits approaches.
Those two approaches reached every FPR value down to 10−3. When comparing the CCR@FPR
values directly, the probability approach always performs better than the logits approach except
for the closed-set accuracy where they reach the same score. Likely this is the case because the
sigmoid function used to obtain the probabilities squashes the logits between zero and one, which
makes this approach less prone to very large or small logits. Although this brings some informa-
tion loss due to the nature of the logit function, the squashing property of the sigmoid function
seems more important than the complete information that is available when the logits are used
directly.

The probability evaluation approach stands out on top and excels at every FPR in Table 6.3.

6.2 Preliminary Experiments on EMNIST 33

Table 6.3: EVALUATION METRICS. This table shows the CCR@FPR values on the validation set for the
evaluation approaches threshold, probabilities, and logits. An empty cell means this specific CCR has not
been reached for a given FPR value. The best result per FPR value is marked bold.

Evaluation Approach CCR@FPR
10−3 10−2 10−1 1

Threshold 0.9868
Probabilities 0.0059 0.0716 0.5342 0.9871
Logits 0.0018 0.0525 0.4479 0.9871

This is why it will also be used in all of the following experiments.

6.2.4 Training with Negatives
By integrating negative samples into the training, we hope to achieve better results when com-
pared to training without negatives. With this experiment, we want to answer RQ 3.1 and RQ 3.2.
We have trained the networks once with an integrated approach which integrates the negatives
as an additional class and once with an equal approach where the network learns to preditct 0.5
for the negative sample, as described in Section 5.3.1. The better one of the two binary ensem-
ble options was then trained again using focal loss, with the idea in mind to focus the network
more on hard-to-classify examples to reach better performance. Regarding the parameters α and
γ of the focal loss, we set α = −1 to ignore the class weighting and γ = 2 to focus more on the
hard-to-classify examples. As a baseline, we have trained a network using plain Softmax without
negatives and one with negatives using the Softmax-based EOS approach, as described in Sec-
tion 3.2. With those baselines, we want to see if training with negatives boosts the performance
on the open-set classification task.

When looking at the resulting CCR@FPR scores in Table 6.4, we can see that the integrated
approach does perform marginally worse than the equal approach. This could be because an
output of 0.5 introduces more differences in the latent space than just learning the negatives as
an additional class and therefore fewer false classifications happen. When comparing the BCE
against the focal loss trained on the same network architecture and using the equal approach to
integrate negatives we see, that the accuracy of the focal loss approach is about .6% lower than
the equal approach trained with BCE. Also, for the remaining FPR the equal approach trained with
focal loss performs worse than its counterpart trained with just the BCE. This might be due to the
nature of the focal loss, which in our setting focuses on the hard-to-classify samples at the expense
of the easily-classified ones.

Taking our best approach, equal trained with BCE, and comparing it against the EOS baseline,
we do observe, that the accuracy is virtually the same for both models. Moreover, it is worse than
for the Softmax-based approach, which was not trained with negatives. This slightly lower ac-
curacy on the closed-set seems like the sacrifice for increased open-set classification capabilities.
This is further supported when we look at Table 6.4, the Softmax-based approach was the only
one not reaching an FPR of 10−1, which indicates that this baseline does produce such high prob-
abilities that there is no threshold θ which would allow the computation of lower FPR values. At
the FPR of 10−1 our equal approach does even outperform the EOS at about 2.5%. Although this is
a very small difference, it might be an indication that training a binary ensemble with negatives to
output 0.5 for negatives might be beneficial compared to the Softmax-based EOS approach. This
positive result indicates that the equal approach is a promising way to integrate negative samples
into the training.

34 Chapter 6. Experiments and Results

Table 6.4: TRAINING WITH NEGATIVES. This table shows the CCR@FPR values for networks that
have been trained with negative samples. Additionally, the equal approach has been trained with focal
loss to focus more on hard-to-classify samples. The EOS approach is the baseline to compare our negative
approaches against. B indicates the number of binary classifiers in the ensemble. An empty cell means this
specific CCR has not been reached for a given FPR value. The best result per FPR value is marked bold.

Model B Loss CCR@FPR
10−3 10−2 10−1 1

Integrated (Extra Class) 40 BCE 0.0249 0.1009 0.5993 0.9864
Equal (0.5 Output) 40 BCE 0.0324 0.1149 0.6094 0.9852
Equal (0.5 Output) 40 Focal Loss (γ = 2) 0.0133 0.0722 0.5203 0.9791
EOS 0 Entropic 0.5487 0.9893
Softmax 0 CE 0.9918

Table 6.5: TRAINING PARAMETERS OF IMAGENET EXPERIMENTS. This table shows the training
parameters used for the experiments on the ImageNet protocols. The combined+ and combined approaches
are as shown in Figure 5.3 and the baseline does use a traditional Softmax-based approach. Number of
Models is the number of models used simultaneously and Number of Binary Classifiers is the number of
individual binary classifiers which compose the ensemble of binary classifiers. Values separated by a “/”
indicate that this value is either one or the other depending on the experiment.

Hyperparameter Combined+ Combined Baseline
Task Binary Classification Binary Classification Classification
Number of Models 1 1 1
Number of Binary
Classifiers (B) 40 40/500 No binary classifiers

Epochs 120 120 120
Batch Size 32 32 32
Loss BCE BCE Softmax/EOS
Optimizer Adam Adam Adam
Learning Rate 0.001 0.001 0.001

6.3 Experiments on ImageNet
This section builds upon the results obtained from Section 6.2. The experiments are conducted
on the ImageNet protocols described in Section 4.2. As backbone network we use a ResNet-
503, which offers a good trade-off between network size, training speed, and ability to learn the
classification task on the ImageNet protocols. In Table 6.5 the training parameters used for the
subsequent experiments on the ImageNet protocols can be seen.

6.3.1 Optimal Number of Classifiers
This experiment is very similar to the one in Section 6.2.1 and aims to answer RQ 4.1. To maintain
comparability and to keep complexity low, we do not train with negative samples. We want to
test again what the optimal number of binary classifiers is, this time on the ImageNet dataset,
especially for protocol 2, since we do have a lot more classes and a different underlying model.

3Implementation adapted from here: https://github.com/pytorch/vision/blob/main/torchvision/
models/resnet.py#L736

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L736
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L736

6.3 Experiments on ImageNet 35

A combined model with 500 binary classifiers that have been selected randomly, as described in
Section 5.1.1, is trained on protocol 2 and evaluated on the validation set. Thereafter, the same
classifiers are also evaluated on the test set, by selecting a fraction of the 500 binary classifiers of
the ensemble ranging from 5 to 500. In this experiment, only the random approach of generating
the initial binary splits for the classifiers of the ensemble is used, because optimizing the Ham-
ming distance gets very computationally expensive if one has as many as 30 classes, as in protocol
2. Two approaches are pursued on how to select the next binary classifier to add to the output of
the ensemble, namely a greedy and a random approach. In the latter, we select the next classifier
randomly out of all unused classifiers. This is done ten times and allows the computation of the
mean and standard deviation of the random approach. The greedy approach chooses the next
classifier out of the unused classifiers such that it maximizes the CCR@FPR on the validation set
for a given number of binary classifiers.

When looking at the results in Figure 6.2 it can be seen that on the validation set all the results
lie between 1.03 and 1.11, which is very close. Furthermore, it can be observed, that a very low
number of binary classifiers performs worse than more. Interestingly, at around 40 binary classi-
fiers the curve starts to flat out for the random approach and only increases CCR@FPR marginally.
This is also true for the negative and unknown samples on the test set. This is very similar to what
we have seen in Section 6.2.1 with the random sampling approach. On the other hand, the greedy
approach does even reach its best score at around 40 binary classifiers on the validation set and
does thereafter start to decline again. This might surprise at first, as it goes against our hypothe-
sis, but we always maximize the CCR@FPR in the greedy approach, so it seems like some binary
classifiers are not performing so well, and they are only added later on which then start to de-
crease the performance of the ensemble again. This is not true for the unknowns on the test set,
where the greedy approach does not have this steep decline in performance and reaches its maxi-
mum score at around 120 binary classifiers. We do see that binary classifiers which maximize the
score on the validation set perform well on the negatives on the test set but rather poorly on the
unknowns. Therefore, we can assume that the best performing classifiers on the validation set
do not translate to also the best performance on the unknowns, which is an indication that the
greedy approach is overfitting on the validation set.

In conclusion, we can say that the optimum number of binary classifiers is similar to our
results from Section 6.2.1. For the following experiments, we therefore use 40 binary classifiers.

6.3.2 Combined+ vs. Combined Approach
Due to the vast amount of classes on the ImageNet protocols, with some of them being quite
challenging to learn for a binary classifier, it is a reasonable action to give each binary classifier
more theoretical capability to learn its specific classification task based on the features provided
by the backbone network. This experiment tests the combined+ approach against the standard
combined approach introduced in Section 5.2 on protocol 2 and therefore tries to answer RQ 4.2.
The combined+ approach comes with the parameter k which defines the dimensionality of the
individual fully connected layer per binary classifier. In this experiment, k was set to arbitrary
numbers of 5, 10, and 20.

When looking at the resulting CCR@FPR scores in Table 6.6 we can see that the combined+ ap-
proach had a significantly higher performance of 6-8% compared to the combined approach. For
an FPR of 10−1 the combined+ approaches having k equal to 10 or 20 outperformed the combined
approach at about 6%, whereas the combined+ approach with k equal to 5 performed worse than
the normal combined approach. The combined+ approaches using k equal to 5 or 10 were the
only ones to reach an FPR of 10−2, which shows their superiority when compared to the com-
bined approach.

Regarding the optimal number for parameter k, we see that 10 does result in the best CCR@FPR

36 Chapter 6. Experiments and Results

0 100 200 300 400 500
1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

Su
m

m
ed

 C
CR

@
FP

R

P2 Negative (val)

0 100 200 300 400 500

1.08

1.10

1.12

1.14

1.16

P2 Negative (test)

0 100 200 300 400 500

1.34

1.35

1.36

1.37

1.38

1.39

1.40

P2 Unknown (test)

Number of Classifiers
Greedy Random (mean) Standard Deviation

Figure 6.2: SUMMED UP CCR@FPR FOR AN INCREASING NUMBER OF CLASSIFIERS. This figure
shows the number of binary classifiers on the x-axis and the summed CCR@FPR values on the y-axis for the
FPR at (10−3, 10−2, 10−1, 1). The greedy approach chooses the classifier which maximizes the CCR@FPR
for a given number of binary classifiers. The random approach is the mean over randomly choosing the
classifiers ten times.

Table 6.6: COMBINED VS. COMBINED+ APPROACH. This table shows the CCR@FPR values for the
combined and combined+ approach evaluated on the validation set of protocol 2. The latter uses two fully-
connected output layers which are learned individually by each binary classifier. The parameter k is the
dimensionality of the individual fully connected output layer. B indicates the number of binary classifiers
in the ensemble. An empty cell means this specific CCR has not been reached for a given FPR value. The
best result per FPR value is marked bold.

Model B k CCR@FPR
10−3 10−2 10−1 1

Combined 40 0.2728 0.5700
Combined+ 40 5 0.0764 0.2019 0.6413
Combined+ 40 10 0.0984 0.3373 0.6503
Combined+ 40 20 0.3291 0.6324

in our experiment. When k is equal to 5 there most likely is too little room for the fully connected
layers to adapt sufficiently to the data. On the other hand, with k being equal to 20 we do see also
a worse performance than with k being equal to 10. The reason for this could be too large fully
connected layers which are therefore unable to generalize enough and start memorizing the data,
which results in overfitting.

In general, we see that the combined+ approach with k equal to 10 does outperform the com-
bined approach by about 6-8% on the validation set and without using negatives for training. In
this case, the result translates to the unknowns on the test set and is therefore well worth pursuing
in the following experiments.

6.3.3 Binary Ensemble on all three Protocols
Figure 6.3 shows the OSCR curves for protocols 1, 2 and 3 evaluated on the negatives and un-
knowns of the test set. In the following, each protocol is discussed individually. The combined+
binary ensemble approach with k = 10 is used.

6.3 Experiments on ImageNet 37

The protocol P1 shows on the negatives that the binary ensemble does reach a slightly lower
closed-set accuracy than its Softmax counterpart. However, for a marginally smaller FPR, it does
outperform the Softmax-based approaches. On the unknowns it looks quite similar. The binary
ensemble does outperform the Softmax-based approach by an even larger margin there. When
looking at the binary ensemble which used negatives during training, it does perform worse by
a small margin than the EOS-based approach until the FPR of 10−2 and afterward does outper-
form it. On the unknowns, the behavior is similar and the ensemble with negatives and EOS is
outperformed by the binary ensemble without negatives at a CCR of 10−3. It seems like the bi-
nary ensemble can learn the classification on the closed-set almost as well as the Softmax-based
approach, while keeping the score for unknown samples lower in the case of the unknowns being
very dissimilar from the known samples as in P1.

The protocol P2 does show almost no differences on the negatives between the binary ensem-
ble and the Softmax-based approach. Both perform rather poorly for low FPR values, which is
mostly due to the protocol, as both, the known and negative classes are hunting dog species,
which makes this a very hard task for a neural network. On the unknowns, the binary ensem-
ble does perform slightly better than the Softmax-based approach. The binary ensemble trained
with negatives does have about a 10% worse closed-set accuracy than the EOS approach. Also
for smaller FPR values it is worse than its counterpart the EOS method. This is most likely be-
cause it must be very difficult for a binary classifier to distinguish among two random partitions
of different hunting dog breeds, as they have very similar visual features.

The protocol P3 also shows almost no difference between the binary ensemble and the Softmax-
based approach on the negatives and unknowns. When comparing the approaches training with
negative samples, the binary ensemble does have about a 5% lower closed-set accuracy than the
EOS approach. On the unknown samples, these two approaches are quite similar regarding per-
formance. The binary ensemble does have a slightly lower closed-set accuracy but a slightly better
performance for smaller FPR values.

In general, we can say the binary ensemble approach seems to work better than its Softmax
counterpart when no negatives for training are available and a higher score at a lower FPR is
preferred over the best closed-set accuracy. Also, it works best when the unknown samples are
semantically far from the known samples, such as in P1. This shows that the binary ensemble is
well suited for out-of-distribution tasks and needs more improvement for true open-set scenarios.

38 Chapter 6. Experiments and Results

0.0

0.2

0.4

0.6

0.8 P1 Negative P1 Unknown

0.0

0.2

0.4

0.6

0.8 P2 Negative P2 Unknown

10 4 10 3 10 2 10 1 1000.0

0.2

0.4

0.6

0.8 P3 Negative

10 4 10 3 10 2 10 1 100

P3 Unknown

FPR

CC
R

SoftMax EOS Binary Ensemble Binary Ensemble (*)

Figure 6.3: OSCR CURVES OF BINARY ENSEMBLE VS. SOFTMAX BASED APPROACHES. This figure
shows the OSCR curves for negative and unknown samples on all three protocols. Color does separate
binary ensemble (combined+ with k = 10) and Softmax-based approaches. Line style does separate incor-
porating negatives during training or not, whereas a solid line indicates no negatives are used for training
and a dashed line shows negatives are included during training. The Binary Ensemble (*) and EOS net-
works have both been trained with negatives.

Chapter 7

Discussion

This section discusses the results of the experiments carried out in Chapter 6. In the end, the
limitations of the experiments are shown.

7.1 Creation of a Binary Classification Problem

We have explored two slightly different ways to create binary partitions used in the binary ensem-
ble classifier, namely a random approach and one that maximizes the Hamming distance between
the classes. The latter was expected to perform better than a random approach, however, as can
be seen in Figure 6.1 the exact opposite happened. This is surprising and unexpected. To look
further into it, the mean minimum Hamming distance for a given number of classifiers for the
two approaches is plotted in Figure 7.1. The mean minimum Hamming distance is the minimum
Hamming distance between any two classes c ∈ C, for a fixed number of binary classifiers b ∈ B.
The mean is taken over ten iterations of this procedure. It can be seen that with an increasing
number of binary classifiers, the minimum Hamming distance does steadily increase for both ap-
proaches. This aligns with the underlying theoretical property that more binary classifiers lead to
a larger Hamming distance between the classes. Nonetheless, it is interesting to see, as the ran-
dom approach does not consider the Hamming distance when creating sets. However, it might be
the case that with the constraints formulated in Section 5.1.1, namely, that no classifier contained
in the ensemble should learn the same binary split and also not the inverse, this results in an
increasing Hamming distance already, as duplicates are avoided.

As can be further seen in Figure 7.1 the Hamming distance approach does in general only re-
sult in a slightly higher minimum Hamming distance between any two classes of the ensemble.
However, in Figure 6.1 the approach maximizing the minimum Hamming distance between any
two classes greatly underperformed the random approach on average, especially for lower num-
bers of binary classifiers. Therefore, it may be that the Hamming distance is not a desirable metric
to optimize for, even though it might first seem so. Instead of maximizing the minimum Ham-
ming distance between any two classes, maximizing it between the binary classifiers would be
an alternative approach. Furthermore, it could be that the EMNIST dataset and the experiment
implementation in the code are flawed and therefore misleading results are obtained. Another
weak point could be that only one model has been trained for the experiment in Figure 6.1, which
has thereafter been evaluated 10 times. The results may look different when multiple models
are trained, as then the underlying partitions of the binary classifiers are also most likely vastly
different.

40 Chapter 7. Discussion

0 20 40 60 80 100 120
Number of Classifiers

0

10

20

30

40

50

60

70

M
in

im
um

 H
am

m
in

g
Di

st
an

ce

Hamming (mean)
Random (mean)

Standard Deviation
Standard Deviation

Figure 7.1: MEAN MINIMUM HAMMING DISTANCE FOR THE RANDOM AND HAMMING AP-
PROACH. This figure shows the minimum Hamming distance between any two of 10 classes on the y-axis.
The number of binary classifiers is shown on the x-axis. The mean and standard deviation are calculated
over 10 iterations.

7.2 Analysis of High-Confidence Misclassifications
and Rare Errors

Quantitative and qualitative evaluation of the model error allows us to grasp where the underly-
ing binary classifier is struggling regarding its closed-set and open-set tasks. For this evaluation,
the binary ensemble using the combined+ approach with k = 10, trained without negatives on
protocols 1, 2, and 3 is evaluated. We look at the binary ensemble trained with no negatives, as
this network was able to outperform its Softmax counterpart, in Figure 6.3, for lower FPR-values.
Out of the 5800 known samples in P1, 2043 have been classified wrong; respectively, 510 out of
1500 for P2, and 1934 out of 7550 for P3. These numbers make it well worth exploring where the
models make mistakes.

For the binary ensemble model on P1, the top-3 misclassified classes are misclassified more
than 72% as can be seen in Table 7.1. Especially the known class “English Foxhound” gets mis-
classified 80% of the time. When it is misclassified, it is classified as a “Walker Hound” 40% of
the time. This is an especially high rate. When looking at a misclassified sample in Figure 7.2 for
P1 in the left column and comparing it to a dog from the class “Walker Hound” this is, however,
understandable to us humans. Without extensive knowledge, the dogs seem to have similar vi-
sual characteristics. This makes it difficult for the model to distinguish between those two dog
breeds. A potential improvement could be made by including more training samples of those two
dog breeds. Another interesting point to touch upon is the mean score of 0.80 or above, which
results over all three protocols after applying Equation 5.10 to the scores of the binary ensemble.
This shows us that the binary classifiers are often completely wrong with their prediction, which

7.2 Analysis of High-Confidence Misclassifications and Rare Errors 41

Table 7.1: MISCLASSIFICATION ANALYSIS FOR TOP 3 CLASSES PER PROTOCOL. The table shows
the ground truth class, overall misclassification rate (Misc.), score statistics (Score) including mean (µ),
median (M), and standard deviation (σ), where 1 is the best score and 0 is the worst. The most com-
mon incorrect class prediction (Top Misc.), and the percentage of misclassifications attributed to this top
misclassified class (TMR).

Protocol Ground Truth Misc. Score (µ/M /σ) Top Misc. TMR

P1

English Foxhound 80% 0.88/0.91/0.11 Walker Hound 40%
Appenzeller 74% 0.91/0.97/0.10 Entlebucher 54%
Bloodhound 72% 0.80/0.79/0.11 Basset 19%

P2

English Foxhound 82% 0.90/0.94/0.10 Walker Hound 32%
Bloodhound 60% 0.87/0.91/0.11 Rhodesian Ridgeback 27%

American Staffordshire Terrier 60% 0.87/0.91/0.11 Staffordshire Bullterrier 24%

P3

Moving Van 68% 0.88/0.88/0.10 Trailer Truck 32%
Ear 64% 0.89/0.99/0.13 Corn 72%

Bloodhound 62% 0.80/0.77/0.14 Rhodesian Ridgeback 26%

is reasonable to assume when considering their misclassification rate.
On the other hand, it is also well worth looking at samples from the classes that have been

classified correctly most of the time in Figure 7.3. Especially interesting are the samples from
P3 as the known samples are composed of classes that are widely different and do therefore have
diverse ancestors. The sample in Figure 7.3(h) is interesting, where the monkey of class “Proboscis
Monkey” was classified as an “Eel”. If we use our imagination, we can see why the model might
have made that mistake, but we do not know if the model relies on such visual similarities at all.

After looking at the misclassification for known samples it is worth looking into some high-
confidence misclassification for unknown samples in Figure 7.4. In P1 all the dog classes are
known samples and the unknowns consist of non-animal classes. For samples in Figure 7.4(a)
and Figure 7.4(b), the dog present in the pictures was correctly predicted; however, they should
have been rejected because the images are labeled as “muzzle” and “minivan” respectively. The
sample in Figure 7.4(c) was predicted as “Miniature Pinscher” with a very high score of 0.99,
which is wrong. This example shows clearly that there is enough room for the model to improve
on its open-set task, as a “lighter” is semantically very different from a dog. Considering P2,
hunting dog classes are known samples, while other 4-legged animal classes are unknown. Both
the samples in Figure 7.4(e) and Figure 7.4(f) were predicted as “Norwegian Elkhound” when
they should have been rejected as unknown. Although both samples are wolves according to
their ImageNet class. The prediction of the model is wrong and “Norwegian Elkhound” and
“wolves” are not closely related in the WordNet hierarchy, but the “Norwegian Elkhound” de-
scended at least partially from a wolf (Vilà et al., 1999). In P3 the known and unknown classes are
both a mix of classes of animals, plants, and objects. The sample in Figure 7.4(i) is again a very
reasonable misclassification by the model. Samples in Figure 7.4(g) and Figure 7.4(h) are clearly
misclassified. “Granny Smith” shares some visual similarities with “Acorn”, such as both being
green. However, we do not know why the model made those highly confident mistakes, but it
seems like the network would benefit from more robust features, which hopefully lead to better
classifications.

In conclusion, we can say that on all three protocols, the pattern for common misclassifications
is very similar. The misclassifications are often visually close to the ground truth class. Some
samples are also not attributable to one class, as can be seen in Figure 7.2(e), where the model
predicted “Trailer Truck” but the ground truth is “Moving Van”. When looking at a sample from
the class “Trailer truck” in Figure 7.2(f) it is clear that the prediction is theoretically correct, and
the underlying dataset is ambiguous. More samples of unknown classes that received high confi-

42 Chapter 7. Discussion

P1:

(a) GT: English Foxhound
Predicted: Walker Hound

(b) Random sample of a Walker Hound

P2:

(c) GT: American Staffordshire Terrier
Predicted: Stafordshire Bullterrier

(d) Random sample of a Stafordshire
Bullterrier

P3:

(e) GT: Moving Van
Predicted: Trailer Truck

(f) Random sample of a Trailer Truck

Figure 7.2: FREQUENT MISCLASSIFICATIONS. Misclassification examples for different protocols (P1,
P2, P3). For each protocol, the left image shows a misclassified example with its ground truth and predicted
label and the right image shows a sample of the class it was misclassified as.

7.2 Analysis of High-Confidence Misclassifications and Rare Errors 43

P1:

(a) GT: Dalmatian
Predicted: Maltese

(b) GT: Leonberg
Predicted: German Shepard

(c) GT: Samoyed Hound
Predicted: Pomeranian

P2:

(d) GT: Bedlington Terrier
Predicted: Norwegian

Elkhound

(e) GT: Border Terrier
Predicted: Rhodesian

Ridgeback

(f) GT: Weimaraner
Predicted: Saluki

P3:

(g) GT: Junco
Predicted: Chickadee

(h) GT: Proboscis Monkey
Predicted: Eel

(i) GT: Ruddy Turnstone
Predicted: Jaguar

Figure 7.3: CLASSIFICATION OUTLIERS FOR DIFFERENT PROTOCOLS. These outliers represent rare
misclassifications where most samples of the same class are correctly classified.

44 Chapter 7. Discussion

P1:

(a) GT: Unknown
Predicted: German Sheperd

INC: Muzzle
Score: 0.99

(b) GT: Unknown
Predicted: Labrador Retriever

INC: Minivan
Score: 0.99

(c) GT: Unknown
Predicted: Miniature Pinscher

INC: Lighter
Score: 0.99

P2:

(d) GT: Unknown
Predicted: Yorkshire Terrier

INC: Shih Tzu
Score: 1.00

(e) GT: Unknown
Predicted: Norwegian

Elkhound
INC: Timber Wolf

Score: 1.00

(f) GT: Unknown
Predicted: Norwegian

Elkhound
INC: White Wolf

Score: 1.00

P3:

(g) GT: Unknown
Predicted: Granny Smith

INC: Acorn
Score: 1.00

(h) GT: Unknown
Predicted: Cougar

INC: Arabian Camel
Score: 1.00

(i) GT: Unknown
Predicted: Laptop

INC: Notebook
Score: 1.00

Figure 7.4: HIGH CONFIDENT PREDICTIONS FOR UNKNOWNS. The samples shown in the figure do all
have a ground truth (“GT”) class of unknown. “Predicted” shows the predicted class with the probability
score (“Score”). The ImageNet class (“INC”) shows the corresponding class from the ImageNet dataset,
where the sample is not labeled as an unknown class.

7.3 Analysis of Score Distributions 45

dence for a known class can be found in Appendix A.

7.3 Analysis of Score Distributions

We apply Equation 5.10 to the scores of the binary ensemble to receive probabilities that are com-
parable with the scores of the Softmax-based approaches. For the known samples, we use the
probability assigned to the correct class. For the negative/unknown class, we select the maxi-
mum probability over all known classes. When looking at these scores across the protocols P1,
P2, and P3 between Softmax and binary ensemble-based approaches in Figure 7.5, we can see in-
teresting differences. When inspecting the binary ensemble approaches, we see that many known
samples almost receive the maximum possible score and many others get a score of around 0.5.
The score of 0.5 is also what we would expect from a randomly guessing model. Interestingly, the
binary ensemble trained with negative samples does give more known samples a low score than
the binary ensemble without negatives. This is similar to what we see when training with Softmax
vs. EOS, where the Softmax-based method also tends to give more known samples a higher score.
When looking at the score distribution for the known samples between the binary ensembles and
the Softmax approaches, it is recognizable that the scores are distributed more uniformly and are
less concentrated around the extreme scores.

When looking at the scores for the unknown samples, many of them receive a score of around
0.5 for P1 when using binary ensembles. This is especially great to see for the binary ensemble
trained without negatives and indicates that it can successfully reject unknowns to a certain de-
gree. This score distribution also explains why the binary ensemble trained without negatives
performed similarly well to the EOS approach on the unknowns in Figure 6.3, in the top-right
graph. In P2 and P3 the binary ensemble does give many unknowns a very high score of 1. How-
ever, when compared to its counterpart, the Softmax approach, we do see that for the binary
ensemble still fewer samples are given such a high score. With the incorporation of negatives, the
binary ensemble can give a big part of the unknown samples a low score of around 0.5, similar
to what EOS does, when compared to the Softmax approach. With negatives, more unknown
samples receive a lower score from the binary ensemble. However, this is counteracted by more
known samples getting a lower score too, which again worsens the performance. This is very
interesting to point out as this effect can also be seen for Softmax and EOS but there, when incor-
porating negatives, the effect of known samples receiving a very low score afterward is smaller.
In P2 and P3, this effect is very strong for the known samples, many of them get a low score when
training the ensemble with negatives. This may be due that in both protocols there are many neg-
ative samples in total during training. In comparison there are not so many known samples per
class, so likely, the model is not able to learn a good representation of the known samples because
the negatives are overrepresented. An approach to tackle this problem could be to focus more on
hard-to-classify known samples by using e.g., a specialized loss function.

The binary ensemble trained with negatives does a good job of classifying negative samples
as negative by giving them a score of 0.5 on all three protocols. It does this even better than the
EOS approach, which has more negatives with a higher score. Interestingly, the binary ensemble
trained without negatives in P1 can give most of the negative samples a rather low score when
compared to the Softmax approach, which does give many negative samples a high score. For P2

and P3, this is not the case anymore and many negative samples do receive a higher score by the
binary ensemble.

46 Chapter 7. Discussion

0

1000

2000

3000
P1 Binary Ensemble P1 Binary Ensemble (*) P1 SoftMax P1 EOS

0

400

800

1200
P2 Binary Ensemble P2 Binary Ensemble (*) P2 SoftMax P2 EOS

0.0 0.5 1.00

1500

3000

4500

P3 Binary Ensemble

0.0 0.5 1.0

P3 Binary Ensemble (*)

0.0 0.5 1.0

P3 SoftMax

0.0 0.5 1.0

P3 EOS

Probability Score

Sa
m

pl
e

Co
un

t

Known Negative Unknown

Figure 7.5: SCORE DISTRIBUTIONS. Score distributions for known, unknown, and negative samples
across different protocols. Each row represents a different protocol, while columns show various algorithms.
The x-axis represents the probability score, and the y-axis shows the sample count.

7.4 Limitations
Despite the high effort that has been carried out to design this master thesis so general and com-
prehensive, there are some limitations.

The hyperparameters were not all tuned to the same extension. Especially the learning rate,
the optimizer used, and batch size have not been tuned, although they might bring a performance
increase. Rather, a set of hyperparameters was taken that performs adequately, and then other
hyperparameters were tuned, that are more specific to the binary ensemble such as the number of
binary classifiers or hidden dimension size of the fully connected layer in the combined+ network.
Following this approach, the number of binary classifiers in the ensemble was once chosen on
protocol 2 and set as 40. This number may differ for the protocol 1 and 3, as they are quite
different in their composition and number of total classes. Although the protocols are different,
the backbone of all binary ensembles and also the Softmax-based approaches was always the
ResNet-50 on the ImageNet protocols. This may not be optimal and was mainly done to keep the
complexity at a reasonable level. It may be that for Protocol 3, which is very difficult considering
its open-set task, a larger backbone network, such as ResNet-101, would boost the performance,
as it could allow the network to learn more extensive feature representations

Considering the dataset, we have seen in the discussion that some labels of samples are am-
biguous, like depicted in Figure 7.2(e), which could have a bad influence on the network’s perfor-
mance. Although filtering out ambiguous labeled data is very labor intensive, it might increase
the model’s closed- and open-set performance substantially. Furthermore, for the preliminary
experiments conducted on the EMNIST dataset, it is unclear how much they transfer to the Im-
ageNet protocols. The EMNIST dataset may not be optimal for preliminary experiments, and

7.4 Limitations 47

another dataset that is similar to ImageNet could be used, such as CIFAR-10.
Finally, we need to point out that the binary ensemble approach, which uses completely sepa-

rate networks as binary classifiers, performed very well on the EMNIST dataset, as we have seen
in Table 6.2. Hence, the separate approach could potentially also yield such good performance
on the ImageNet protocols. However, due to the immense training time it takes to train with this
separate approach, this was not done in the scope of this thesis.

Chapter 8

Conclusion

8.1 Summary
The aim of this master’s thesis is the use of binary ensemble classifiers for open-set classification,
which is a novel approach when compared to the mostly Softmax-based approaches that are used
otherwise. The thesis covers the procedure that is needed to be able to use an ensemble of binary
classifiers for open-set classification. We started by experimenting with different methods to cre-
ate binary partitions to obtain a binary classification task out of a multi-class problem. We used
a random approach with only a few constraints to prevent any two sets containing the same par-
tition. The second approach for creating binary partitions used the same constraints but on top
chose the sets so that the resulting Hamming distance between the classes is maximized among all
classes. We found that maximizing this class-wise distance did not result in better performance of
the whole binary ensemble. Furthermore, we conducted experiments on three different methods
on how to obtain a single prediction from the binary ensemble out of the underlying binary clas-
sifiers. For this, we compared an approach that uses logits directly against two methods that use
probabilities obtained through sigmoid activation. Resulting we found that the sigmoid approach
is superior to using the logits directly.

For the networks, used to train the binary ensemble classifiers, we have tried different ar-
chitectures based on CNNs, such as fully separate and combined approaches. The prior trained
a completely separate binary classifier for each binary classification problem, whereas the latter
uses a shared backbone, which is used for different binary classifiers simultaneously. The separate
approach performed substantially better than the combined one in the preliminary experiments
on the EMNIST dataset. However, due to its large computational needs and long training time,
we introduced the combined+ approach, which is a mixture of these two approaches. With the
extra fully connected output layer per classifier in the combined+ approach, we showed that it is
possible to improve the performance when compared to the combined approach substantially.

We incorporated negative samples during training with the goal of improving the classifiers.
We pursued two different approaches: the integrated approach included the negatives as just an
extra class, whereas the equal approach trained the network to predict 0.5 for negatives, for a more
balanced model output. We have shown that training the negatives with the equal approach, for a
binary classifier, is superior to just training them as an extra class, but still inferior to the Softmax-
based EOS approach.

Concluding, we can say that it is possible to train an ensemble of binary classifiers for an open-
set problem. We have seen that on the ImageNet protocols with increasing difficulty for the open-
set task, the binary ensemble trained without negative samples can outperform Softmax-based
approaches for false positive rates smaller than one. For the latter, which resembles the closed-set
accuracy, the binary ensemble approach is often worse than using Softmax-based methods. It is

50 Chapter 8. Conclusion

therefore worth considering an ensemble of binary classifiers if there are no negative samples to
train with and the performance for a low false positive rate on the unknowns is to be maximized.

8.2 Future Work
Future research directions that can be considered to improve binary ensembles for open-set clas-
sification are outlined in the following.

Although in theory, it makes sense that a larger Hamming distance between classes should
result in superior models, this was not true in our case. Another direction would be to maxi-
mize the Hamming distance between the binary classifiers instead of the classes, which could
potentially come with an increase in performance. We can say that further research is needed on
the influence of different methods used to create binary partitions, such as the random or Ham-
ming approach. Additionally, completely different methods like grouping semantically similar or
dissimilar classes can be explored.

In our experiments, the binary classifier’s outputs are all weighted the same. This could be a
problem since, in theory, there most likely exist classifiers that work better than others for certain
samples. Using a weighting mechanism for the outputs could be interesting, as well as using
some sort of attention between the different classifiers in hopes of better classifications, all while
being aware of potential overfitting on the training set. We have seen that especially classes that
are very semantically and visually similar tend to get misclassified on the closed-set. This could
potentially be improved by using a mixture-of-experts model, trained on these hard-to-classify
examples, which could improve closed-set accuracy for ensembles of binary classifiers.

Appendix A

Attachments

Figures A.1, A.2, and A.3 show more highly confident misclassifications of unknown samples
over all three ImageNet protocols and are an extension of Section 7.2. Especially interesting are
the samples in Figure A.1, because the network should only be able to classify dogs and should
reject everything else as unknown. Further in Figure A.3 it is very interesting to see that there exist
some very ambiguous classes, one of which is known and the other one belongs to the unknowns.
An example is “Laptop” vs. “Notebook”. Moreover, there exist classes which are very similar but
still different such as “Leopard” vs. “Snow Leopard”.

52 Appendix A. Attachments

GT: Unknown
Predicted: Boston Bull

INC: Typewriter Keyboard
Score: 1.00

GT: Unknown
Predicted: Irish Terrier

INC: French Loaf
Score: 1.00

GT: Unknown
Predicted: Chihuahua

INC: Sax
Score: 1.00

GT: Unknown
Predicted: Saluki
INC: Mousetrap

Score: 1.00

GT: Unknown
Predicted: Schipperke

INC: Electric Guitar
Score: 1.00

GT: Unknown
Predicted: Redbone

INC: Bell Pepper
Score: 1.00

GT: Unknown
Predicted: Lakeland Terrier

INC: Sundial
Score: 1.00

GT: Unknown
Predicted: Redbone

INC: Crane
Score: 1.00

GT: Unknown
Predicted: Redbone
INC: Custard Apple

Score: 1.00

GT: Unknown
Predicted: Pug
INC: Barometer

Score: 1.00

GT: Unknown
Predicted: Pug
INC: Oil Filter
Score: 1.00

GT: Unknown
Predicted: Dalmatian

INC: Abacus
Score: 1.00

GT: Unknown
Predicted: Boston Bull

INC: Padlock
Score: 1.00

GT: Unknown
Predicted: German Shepherd

INC: Muzzle
Score: 1.00

GT: Unknown
Predicted: Redbone

INC: Pretzel
Score: 1.00

GT: Unknown
Predicted: Pug

INC: Combination Lock
Score: 1.00

GT: Unknown
Predicted: Miniature Pinscher

INC: Zucchini
Score: 1.00

GT: Unknown
Predicted: Schipperke

INC: Notebook
Score: 1.00

GT: Unknown
Predicted: Schipperke

INC: Assault Rifle
Score: 1.00

GT: Unknown
Predicted: Kerry Blue Terrier

INC: Pick
Score: 0.99

Figure A.1: HIGH CONFIDENT PREDICTIONS FOR UNKNOWNS ON PROTOCOL 1. The samples
shown in the figure do all have a ground truth (“GT”) class of unknown. “Predicted” shows the predicted
class with the probability score (“Score”). The ImageNet class (“INC”) shows the corresponding class from
the ImageNet dataset, where the sample is not labeled as an unknown class.

53

GT: Unknown
Predicted: Border Terrier

INC: Pekinese
Score: 1.00

GT: Unknown
Predicted: Saluki

INC: Impala
Score: 1.00

GT: Unknown
Predicted: Ibizan Hound

INC: Impala
Score: 1.00

GT: Unknown
Predicted: Norwegian Elkhound

INC: Timber Wolf
Score: 1.00

GT: Unknown
Predicted: Irish Terrier

INC: Brown Bear
Score: 1.00

GT: Unknown
Predicted: Rhodesian Ridgeback

INC: Sorrel
Score: 1.00

GT: Unknown
Predicted: Black-And-Tan Coonhound

INC: Toy Terrier
Score: 1.00

GT: Unknown
Predicted: Norwegian Elkhound

INC: African Hunting Dog
Score: 1.00

GT: Unknown
Predicted: Norwegian Elkhound

INC: Red Wolf
Score: 1.00

GT: Unknown
Predicted: Ibizan Hound

INC: Dhole
Score: 1.00

GT: Unknown
Predicted: Norwegian Elkhound

INC: Grey Fox
Score: 1.00

GT: Unknown
Predicted: Weimaraner

INC: Wild Boar
Score: 1.00

GT: Unknown
Predicted: Border Terrier

INC: Warthog
Score: 1.00

GT: Unknown
Predicted: Ibizan Hound

INC: Sorrel
Score: 1.00

GT: Unknown
Predicted: Yorkshire Terrier

INC: Pekinese
Score: 1.00

GT: Unknown
Predicted: Border Terrier

INC: Kit Fox
Score: 1.00

GT: Unknown
Predicted: Rhodesian Ridgeback

INC: Sorrel
Score: 1.00

GT: Unknown
Predicted: Staffordshire Bullterrier

INC: Wild Boar
Score: 1.00

GT: Unknown
Predicted: Black-And-Tan Coonhound

INC: Toy Terrier
Score: 1.00

GT: Unknown
Predicted: Weimaraner

INC: Otter
Score: 1.00

Figure A.2: HIGH CONFIDENT PREDICTIONS FOR UNKNOWNS ON PROTOCOL 2. The samples
shown in the figure do all have a ground truth (“GT”) class of unknown. “Predicted” shows the predicted
class with the probability score (“Score”). The ImageNet class (“INC”) shows the corresponding class from
the ImageNet dataset, where the sample is not labeled as an unknown class.

54 Appendix A. Attachments

GT: Unknown
Predicted: Limpkin
INC: Alligator Lizard

Score: 1.00

GT: Unknown
Predicted: Laptop

INC: Notebook
Score: 1.00

GT: Unknown
Predicted: Hornbill

INC: Toucan
Score: 1.00

GT: Unknown
Predicted: Lionfish

INC: Cardoon
Score: 1.00

GT: Unknown
Predicted: Lionfish

INC: Cardoon
Score: 1.00

GT: Unknown
Predicted: Granny Smith

INC: Acorn
Score: 1.00

GT: Unknown
Predicted: Laptop

INC: Notebook
Score: 1.00

GT: Unknown
Predicted: Laptop

INC: Notebook
Score: 1.00

GT: Unknown
Predicted: Kite
INC: Bald Eagle

Score: 1.00

GT: Unknown
Predicted: Cougar

INC: Ram
Score: 1.00

GT: Unknown
Predicted: File
INC: Chiffonier

Score: 1.00

GT: Unknown
Predicted: Leopard
INC: Snow Leopard

Score: 1.00

GT: Unknown
Predicted: Laptop

INC: Notebook
Score: 1.00

GT: Unknown
Predicted: File
INC: Chiffonier

Score: 1.00

GT: Unknown
Predicted: Corn
INC: Bell Pepper

Score: 1.00

GT: Unknown
Predicted: Staffordshire Bullterrier
INC: American Staffordshire Terrier

Score: 1.00

GT: Unknown
Predicted: Desktop Computer

INC: Notebook
Score: 1.00

GT: Unknown
Predicted: Leopard
INC: Snow Leopard

Score: 1.00

GT: Unknown
Predicted: Bolete
INC: Mushroom

Score: 1.00

GT: Unknown
Predicted: Granny Smith

INC: Bell Pepper
Score: 1.00

Figure A.3: HIGH CONFIDENT PREDICTIONS FOR UNKNOWNS ON PROTOCOL 3. The samples
shown in the figure do all have a ground truth (“GT”) class of unknown. “Predicted” shows the predicted
class with the probability score (“Score”). The ImageNet class (“INC”) shows the corresponding class from
the ImageNet dataset, where the sample is not labeled as an unknown class.

55

List of Figures
5.1 Random Partitioning of Classes . 20
5.2 Class-wise Distance . 21
5.3 Separate vs. Combined vs. Combined Large vs. Combined+ Approach 23

6.1 Random vs. Hamming Distance Approach and Number of Binary Classifiers . . . 31
6.2 Summed up CCR@FPR for an Increasing Number of Classifiers 36
6.3 OSCR Curves of Binary Ensemble vs. Softmax Based Approaches 38

7.1 Mean Minimum Hamming Distance for the Random and Hamming Approach . . 40
7.2 Frequent Misclassifications . 42
7.3 Classification Outliers for Different Protocols . 43
7.4 High Confident Predictions for Unknowns . 44
7.5 Score Distributions . 46

A.1 High Confident Predictions for Unknowns on Protocol 1 52
A.2 High Confident Predictions for Unknowns on Protocol 2 53
A.3 High Confident Predictions for Unknowns on Protocol 3 54

56 Appendix A. Attachments

List of Tables
4.1 EMNIST Specification for Preliminary Experiments 16

5.1 Example of Binary Class Encoding . 24
5.2 Evaluation Approaches and Methods for Training with Negatives 27

6.1 Training Parameters of Preliminary Experiments . 30
6.2 Separate and Combined Binary Classifiers . 32
6.3 Evaluation Metrics . 33
6.4 Training with Negatives . 34
6.5 Training Parameters of ImageNet Experiments . 34
6.6 Combined vs. Combined+ Approach . 36

7.1 Misclassification Analysis for Top 3 Classes per Protocol 41

Bibliography

Aran, O. and Akarun, L. (2010). A multi-class classification strategy for Fisher scores: Application
to signer independent sign language recognition. Pattern Recognition, 43(5):1776–1788.

Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., and Campilho, A.
(2017). Classification of breast cancer histology images using convolutional neural networks.
PloS one, 12(6):1–14.

Bendale, A. and Boult, T. E. (2016). Towards open set deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

Bhoumik, A. (2021). Open-set classification on ImageNet. Master’s thesis, University of Zurich.

Bisgin, H., Palechor, A., Suter, M., and Günther, M. (2024). Large-scale evaluation of open-set
image classification techniques. arXiv preprint arXiv:2406.09112.

Breiman, L. (1996). Bagging predictors. Machine learning, 24:123–140.

Cao, A., Luo, Y., and Klabjan, D. (2021). Open-set recognition with gaussian mixture variational
autoencoders. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
6877–6884.

Chen, G., Peng, P., Wang, X., and Tian, Y. (2021). Adversarial reciprocal points learning for open
set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):8065–8081.

Clark, P. and Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In Ma-
chine Learning—EWSL-91: European Working Session on Learning Porto, Portugal, March 6–8, 1991
Proceedings 5, pages 151–163. Springer.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. (2017). EMNIST: Extending MNIST to hand-
written letters. In 2017 International Joint Conference on Neural Networks, pages 2921–2926.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255.

Dhamija, A. R., Günther, M., and Boult, T. (2018). Reducing network agnostophobia. Advances in
Neural Information Processing Systems, 31.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences, 55(1):119–139.

Frey, B. J. and Dueck, D. (2007). Clustering by passing messages between data points. science,
315(5814):972–976.

58 BIBLIOGRAPHY

Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis,
38(4):367–378.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202.

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., and Herrera, F. (2011). An overview of
ensemble methods for binary classifiers in multi-class problems: Experimental study on one-
vs-one and one-vs-all schemes. Pattern Recognition, 44(8):1761–1776.

Ge, Z., Demyanov, S., Chen, Z., and Garnavi, R. (2017). Generative OpenMax for multi-class open
set classification. British Machine Vision Conference.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256. JMLR Workshop and Conference Proceedings.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Grother, P. J. and Hanaoka, K. (1995). NIST special database 19. Handprinted forms and characters
database, National Institute of Standards and Technology, 10:69.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hendrycks, D., Basart, S., Mazeika, M., Zou, A., Kwon, J., Mostajabi, M., Steinhardt, J., and Song,
D. (2022). Scaling out-of-distribution detection for real-world settings. International Conference
on Machine Learning.

Hendrycks, D. and Gimpel, K. (2017). A baseline for detecting misclassified and out-of-
distribution examples in neural networks. International Conference on Learning Representations.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and
Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolu-
tional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex.
The Journal of physiology, 148(3):574.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of local
experts. Neural Computation, 3(1):79–87.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 59

Kaur, C. and Garg, U. (2023). Artificial intelligence techniques for cancer detection in medical
image processing: A review. Materials Today: Proceedings, 81:806–809.

Knerr, S., Personnaz, L., and Dreyfus, G. (1990). Single-layer learning revisited: a stepwise pro-
cedure for building and training a neural network. In Neurocomputing: algorithms, architectures
and applications, pages 41–50. Springer.

Koh, D.-M., Papanikolaou, N., Bick, U., Illing, R., Kahn Jr, C. E., Kalpathi-Cramer, J., Matos,
C., Martí-Bonmatí, L., Miles, A., Mun, S. K., et al. (2022). Artificial intelligence and machine
learning in cancer imaging. Communications Medicine, 2(1):133.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25.

Lan, G., Gao, Z., Tong, L., and Liu, T. (2022). Class binarization to neuroevolution for multiclass
classification. Neural Computing and Applications, 34(22):19845–19862.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (2002). Efficient backprop. In Neural networks:
Tricks of the trade, pages 9–50. Springer.

LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Muller, U. A.,
Sackinger, E., Simard, P., et al. (1995). Learning algorithms for classification: A comparison on
handwritten digit recognition. Neural networks: the statistical mechanics perspective, 261(276):2.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object detection.
In Proceedings of the IEEE international conference on computer vision, pages 2980–2988.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016a). SSD:
Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Ams-
terdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 21–37. Springer.

Liu, W., Wen, Y., Yu, Z., and Yang, M. (2016b). Large-margin softmax loss for convolutional neural
networks. In International Conference on Machine Learning, pages 507–516. PMLR.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 10012–10022.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022). A convnet for the
2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
11976–11986.

Matan, O., Kiang, R., Stenard, C., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W., Jackel, L., and Le Cun, Y. (1990). Handwritten character recognition using neural network
architectures. In 4th USPS advanced technology conference, volume 2, pages 1003–1011.

Metzner, C., Schilling, A., Traxdorf, M., Tziridis, K., Maier, A., Schulze, H., and Krauss, P. (2022).
Classification at the accuracy limit: facing the problem of data ambiguity. Scientific reports,
12(1):22121.

Miller, G. A. (1998). Nouns in wordnet. WordNet: An electronic lexical database, pages 23–46.

60 BIBLIOGRAPHY

Palechor, A., Bhoumik, A., and Günther, M. (2023). Large-scale open-set classification protocols
for ImageNet. In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, pages
42–51.

Panareda Busto, P. and Gall, J. (2017). Open set domain adaptation. In Proceedings of the IEEE
international conference on computer vision, pages 754–763.

Pawara, P., Okafor, E., Groefsema, M., He, S., Schomaker, L. R., and Wiering, M. A. (2020). One-
vs-one classification for deep neural networks. Pattern Recognition, 108:107528.

Rasti, P., Ahmad, A., Samiei, S., Belin, E., and Rousseau, D. (2019). Supervised image classification
by scattering transform with application to weed detection in culture crops of high density.
Remote Sensing, 11(3):249.

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., and Lakshminarayanan,
B. (2019). Likelihood ratios for out-of-distribution detection. Advances in neural information
processing systems, 32.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28.

Rudd, E. M., Günther, M., and Boult, T. E. (2016). MOON: A mixed objective optimization net-
work for the recognition of facial attributes. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pages 19–35.
Springer.

Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., and Boult, T. E. (2012). Toward open set
recognition. IEEE transactions on pattern analysis and machine intelligence, 35(7):1757–1772.

Scheirer, W. J., Jain, L. P., and Boult, T. E. (2014). Probability models for open set recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(11):2317–2324.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. International Conference on Learning Representations.

van den Bergh, L. (2023). Improved losses for open-set classification. Master’s thesis, University
of Zurich.

Vareto, R. H., Günther, M., and Schwartz, W. R. (2023). Open-set face recognition with neural
ensemble, maximal entropy loss and feature augmentation. In 2023 36th SIBGRAPI Conference
on Graphics, Patterns and Images, pages 55–60. IEEE.

Vareto, R. H. and Schwartz, W. R. (2020). Unconstrained face identification using ensembles
trained on clustered data. In 2020 IEEE International Joint Conference on Biometrics, pages 1–8.

Vaze, S., Han, K., Vedaldi, A., and Zisserman, A. (2022). Open-set recognition: A good closed-set
classifier is all you need? In IInternational Conference on Learning Representations.

Verma, K. K., Singh, B. M., and Dixit, A. (2022). A review of supervised and unsupervised ma-
chine learning techniques for suspicious behavior recognition in intelligent surveillance system.
International Journal of Information Technology, 14(1):397–410.

Vilà, C., Maldonado, J. E., and Wayne, R. K. (1999). Phylogenetic relationships, evolution, and
genetic diversity of the domestic dog. Journal of Heredity, 90(1):71–77.

BIBLIOGRAPHY 61

Wang, A., Zhang, W., and Wei, X. (2019). A review on weed detection using ground-based ma-
chine vision and image processing techniques. Computers and electronics in agriculture, 158:226–
240.

Wilber, M. J., Scheirer, W. J., Leitner, P., Heflin, B., Zott, J., Reinke, D., Delaney, D. K., and Boult,
T. E. (2013). Animal recognition in the Mojave Desert: Vision tools for field biologists. In 2013
IEEE Workshop on Applications of Computer Vision, pages 206–213. IEEE.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep
neural networks? Advances in neural information processing systems, 27.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay, F. E., Feng, J., and Yan, S. (2021).
Tokens-to-token VIT: Training vision transformers from scratch on ImageNet. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 558–567.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into deep learning. arXiv preprint
arXiv:2106.11342.

Zhang, S., Benenson, R., Omran, M., Hosang, J., and Schiele, B. (2018). Towards reaching hu-
man performance in pedestrian detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):973–986.

Zhou, D.-W., Ye, H.-J., and Zhan, D.-C. (2021). Learning placeholders for open-set recognition. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4401–4410.

Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. CRC press.

	Introduction
	Related Work
	Open-Set Classification
	Binary Classifiers
	Ensemble Learning
	Convolutional Neural Networks

	Background
	Activation and Loss Functions for Classification
	Softmax Activation and Cross-Entropy Loss
	Sigmoid Activation and Binary Cross-Entropy Loss
	Focal Loss

	Training with Negatives
	Open-Set Classification Rate (OSCR)

	Data
	MNIST & EMNIST
	ImageNet Open-Set Classification Protocols

	Approach
	Creating a Binary Classification Problem
	Random Partitioning of Classes
	Partitioning with maximizing Hamming Distance among Classes

	Separate and Combined Binary Classifiers
	Obtaining a Classification Score from the Ensemble Model Output
	Training a Binary Ensemble with Negative Samples

	Experiments and Results
	Neural Networks
	Preliminary Experiments on EMNIST
	Optimal number of Classifiers and maximizing Distance between Classes
	Separate vs. Combined Binary Classifiers
	Evaluation Approaches
	Training with Negatives

	Experiments on ImageNet
	Optimal Number of Classifiers
	Combined+ vs. Combined Approach
	Binary Ensemble on all three Protocols

	Discussion
	Creation of a Binary Classification Problem
	Analysis of High-Confidence Misclassifications and Rare Errors
	Analysis of Score Distributions
	Limitations

	Conclusion
	Summary
	Future Work

	Attachments

